
? HD-A132 329 ADVANCED PATTERN RECOGNITIONS) PAR TECHNOLOGV CORP NEU 1,
HARTFORD NV J L CAMBIER ET AL. MAV 82 PRR-83-1
RADC-TR-83-58 F38682-88-C-8319

UNCLASSIFIED F/G 28/6 NL

WSBm?Tmn**?*?r^&?5*^F^T?'.--']--.' .'• -'- -'-.-'- •'--•"•'-"V •-t-."--.''.""."-l"'*y-7"-'."-"•/•'r:!'v'.'V^~/'

•

1.0 E

I.I

lit
i_
i_
IIS
HI u

lac 128

|££
| 36

La 12.0

• m
IL25 11.4 II 1.6

\

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

AD A1 o 2 o o >

i § <J7 12&

.EtECTEp^
SEP 0 91983^

E

J

"..• •.••.• •!•••.•.•*• "* •**•» •;*»* ' •v^"«^5~^

TTMrT AggTUTTTTI
SECURITY CLASSIFICATION OP THIS PAGE (When Pataj gnfaraoj

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1- REPORT NUMBER

RADC-TR-83-50

2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (end Subtitle)

ADVANCED PATTERN RECOGNITION

S. TYRE OF REPORT a PERIOO COVERED

Final Technical Report
Sep 80 - Nov 82

S. PERFORMING OIG. REPORT NUMBER

83-1
7. AUTHORf»;

Dr. James L. Cambier
Dr. Stephen Barth

Mr. William J. Reid
Mr. Scott A. Barrett

8. CONTRACT OR GRANT NUMBERS;

F306O2-8O-C-O319

9 PERFORMING ORGANIZATION NAME ANO ADDRESS

PAR Technology Corporation
Route 5 Seneca Plaza
New Hartford NY 13413

10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

62702F
45941822

II. CONTROLLING OFFICE NAME ANO AOORESS

Rome Air Development Center (IRRE)
Griffiss AFB NY 13441

12. REPORT OATE

May 1983
13. NUMBER OF PAGES
138

I*- MONITORING AGENCY NAME ft AOORESSC" dilterent from Controlling OUlem)

Same

IS. SECURITY CLASS. (o(title report)

UNCLASSIFIED

IS«. OECLASSIFlCATlON/OOWNGRAOING
SCHEDULE

N/A
I«. DISTRIBUTION STATEMENT (o(Ihle Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol the ebetrect entered In Block 20, II dilterent from Report)

Same

I«. SUPPLEMENTARY NOTES

RADC Project Engineer: Frederick W. Rahrig (IRRE)

••• KEY WORDS (Continue on rorotao aide II naeoaaary and Identity ay block number)

Feature Extraction
Pattern Recognition
Image Processing
Artificial Intelligence

20. ABSTRACT (Continue on roeerao »Id* II neceeeary mnd Identity ay block number)

The Advanced Pattern Recognition effort has provided additional enhancements
to the RADC Image Processing System (IPS) for developing a variety of
techniques in performing target detection and identifications. These
extensions Include the extraction of features based on edge and region
Information in addition to the normal pixel classification methods. This
capability now permits both statistical and symbolic classification of pixels
and objects. Further improvements provide the ability to develop and apply
artificial intelligence in the form of rule3 for extracting features. (Cont'd')

DO FORM
I JAN 73 1473 EDITION OF I NOV • * IS OBSOLETE UNCLASSIFIED X^

SECURITY CLASSIFICATION OF THII PAOE fWha« Oaf Entered)

,- .-'•.-"•,-••*" •'* •>"• »"• •"-•"•. • -'• •'• .'-'. -,'••'- ."•"-"•"•.VV-V-V-'.NY-' - •-
- '- .'•.••I.. \.t IK' 1»,JW*.)LJ. I.V.'W'.JW •»-' •-' •>-- * ' «•' > ' «-' i_l . A . T- - ., • - 1 - i*- .'- »*- • . ._-.-. _ . .

.^" •".;". -". ' • -' - "•- "•'' • -,' ..'-•• • •. /. •.;-. .\ . •. ' .-•;»y^~"y^s^?J?J^.'

jfliCLASSIZIEIL
StCUWITV CLASSIFICATION OF THIS PAOEfKTi«« Dmtm Enlmnd)

? C^T*-

UNCLASSIFIED

-..•^•J ••* --•-• -• -• -i_^_

SECURITY CLASSIFICATION OF •"•«• aAGCr»*»" Omtm Em

• *"- •'-'-t'.''- •'.•.••' ' - - - * ••'•'•• «-' ^' H m . m , a •••••••! •-•-•-•-•-'

Table Of Contents

Section Page

•

•

1. INTRODUCTIO

1.1 BACKGR

N 1-1

OUND 1-1

1.2 SCOPE. 1-2

1.3 REPORT

2. SYSTEM OVER

2.1 IPS HA

ORGANIZATION 1-3

VIEW 2-1

RDWARE CONFIGURATION 2-1

2.1.1 2-1

2.1.2 2-3

2.2 AFES/IPS PROCESSING 2-5

2-7

2.3.1

2.3.2

Method Files 2-8

Measurement Evaluation and

2-10

2.3*2.1 Measurement Evaluation 2-11

2.3.2.2 Structure Analysis . . 2-12

2.3-3 2-13

2.3.4 Classification and Segmenta-

2.3.5

tion 2-13

2-14

2.3.5.1 Symbolic Image Repre-

2-15

4 2.3.5.2 Attribute Manager. . . 2-16

2.3.6 2-16

• 2.3.6.1 Rule-Based Approaches. 2-17

2.3.6.2 Statistical Approaches 2-20

2.3.7 2-21

i

•^•^•^•»^^•^»^^

*

•Ä

— - • • - - - • - -*--

p«p-p I » «• «I • . •(. •>. ••»• »• •

2.4 APR MENUS 2-22

3. APR SYMBOLIC PROCESSING 3-1

3.1 REGIONS, GRID CELLS, EDGES, AND

ATTRIBUTES 3-1

3.1.1 Regions 3-1

3.1.2 Edges 3-3

3.1.3 Grid Cells 3-4

3.1.4 Attributes 3-5

3.1.4.1 Segmentation Attributes 3-6

3.1.4.2 Grid Cell Attributes . 3-8

3.1.4.3 Measurement Attributes 3-8

3.1.4.4 Feature Manuscript

Attributes 3-10

3.1.4.5 Attribute Manager

Attributes 3-10

3.1.4.6 User-Defined Attributes 3-11

3.2 SYMBOLIC DATA STRUCTURES 3-11

3.2.1 Region Ident File 3-14

3.2.2 Edge Ident File 3-14

3.2.3 Atr File 3-15

3.2.4 Hdr Files 3-15

3.2.5 Atr Key File 3-16

3-3 SYMBOLIC DATA ACCESS 3-16

3.3.1 Low-Level Symbolic Data Access. 3-17

3.3.2 Intermediate-Level Symbolic

Data Access 3-19

3.3.2.1 Segmentation Programs. 3-19

3.3.2.2 Utility Programs . . . 3-20

3.3.2.3 DRLMS Programs 3-21

3.3.2.4 Attribute Manager. . . 3-21

3.3.3 High-Level Symbolic Data Access 3-30

ii

'..*.•-•••-•.' •.•••••.'••'->,. r;„ .' -.'.-..'• .'..-. .-.'_•.' •.'.••' ••.*••.''-•.' •-' •.'.-. •-'. ••' •• -..-. •-'.--' .' •. .-w .-. •_ •_..-. -. . , •.«.••«. -t •

. --- -". -

4. PIXEL PROCESSING OPERATIONS AND MEASUREMENT

i

EVALUATION 4-1
l

4.1 MEASUREMENT EXTRACTORS 4-1

•

•

t

4.1.2 sobel dir 4-6

4.1.3 dir filter 4-8

4.1.4 mdmf 4-8

4.1.5 edne fill 4_Q

4.1.6 squeeze i 4-11 I

4.1.7 expand ipr 4-11
\

4.2 EDIT PROGRAMS 4-11

J

4.2.1 mode filter 4-11

•

4.2.2 edge thin 4-12

4.4 MEASUREMENT EVALUATION/STRUCTURE

•

i

1

i

ricceasl«

tPPENDIX A A-1

1

tPPENDIX B B-1

LPPENDIX C C-1

Ki *°Jl_—«-*—-|

1

•

|
I •''
u

I J..

B:
D

i '
r i Dist |

"3 \
a

: - n_—— I

 —* »J \

button/ U% \\"\

and/or I
Special I

-

i

-

1
1
.1

^.ct-

I <
;

*

iil .i

]
J
_

1
]

v.'.v .* -*, •' **.--• • . -"•'*.'•.*-/•. ~. *•.'*• • "•.'-.'• *•.'*•'•.'-*- - .* *. ''.•'.* •' -• •-• -".»* - .•' - •. •.
-. • .-••."'

.f"1 - -J ••• L ' • « . •". ".••.•. •

LIST OF FIGURES

Figure Page

2-1 IPS Configuration 2-2

2-2 Display Workstation Configuration . . 2-4

3-1 Symbolic Data Files 3-12

3-2 APR Directory Structure (fold-out). . 3-13

3-3 Feature Editing Being Applied to
Feature Manuscript 3-25

3-4 Final Edited Feature Manuscript . . . 3-25

4-1 Test Image 4-4

4-2 wiener_edge with f option 4-4

4-3 wiener_edge with c option 4-5

4-4 wiener edge f (green) and c (red)
superimposed 4-5

4-5 sobel magnitude 4-7

4-6 athres output 4-10

4-7 athres output (red) with mdmf
output (green) superimposed 4-10

4-8 Classifier output for pixel method . 4-13

4-9 mode__filter output for Figure 4-8 . 4-13

4-10 Classifier output for edge method
using wiener__edge 4-16

4-11 Results of iteration of edge_thin
on Figure 4-10 4-16

4-12 Discriminant Measure Output 4-20

4-13 Scatter Plotter 4-21

4-14 Cluster Plot 4-22

iv

*• . •. • . . . •.•••:• . • . • •.•.-. i. .••••.•.••. s .•.•• ~ • - '.• • •-..--•-•..-•.•.-
-• -'• • •- -• ! r .% " I ' I 1 ' 1 " • " » 1 I i—-. • ._L_. .. 1. •-. . —-. ...•-••. .'- •- - - - • • •- •• .- - • . -.-...-.•..

**VV -T- -•—» >: >•; • | • • "i • . ••. •-. •!•'. • -^~^"-7T^-?T

4-15 Composite Histogram 4-23

4-16 Class Histograms 4-24

LIST OF TABLES

Table Page

2-1 APR Commands 2-23, 2-24, 2-25

3-1 Feature Analysis Data Table 3-22, 3-23, 3-24

-•-•-•-'• -• '-<* • •!••;• - - • • • -•--...* -•-••....•.••.

1. INTRODUCTION

This document describes the results of RADC contract F30602-80-C-0319,

entitled Advanced Pattern Recognition (APR). The contract was performed by

PAR Technology Corporation between September 30, 1980 and November 30, 1982.

1. 1 BACKGROUND

The objective of the APR effort was to apply techniques developed for

image processing and cartographic feature extraction to the automatic

detection and identification of tactical and cultural targets from various

types of imagery. This was accomplished through implementation of a variety

of enhancements to the RADC Image Processing System (IPS). The IPS is an

image processing testbed which is, except for the absence of a scanner/plotter

subsystem, identical to the Automatic Feature Extraction System (AFES)

developed by PAR under RADC contract F30602-78- C-0080 and delivered to the

Defense Mapping Agency. The AFES design is based in part on earlier image

processing and pattern recognition systems developed by PAR for RADC; these

include the OLPARS and DICIFER systems. Under the Image Feature Manuscript

Generation (IFMG) contract (RADC Contract F30602-78-C-0017) PAR developed

DLMS-type feature manuscript generation software which was extended and

enhanced in the APR effort. Target-detection algorithms developed under the

Pattern Recognition Applications to Imagery Assessment contract (RADC F30602-

78-C-0358) were also incorporated into the APR software.

The AFES/IPS software includes a large collection of system and

applications modules which support a wide variety of functions. The operating

system (UNIX) supports a multi-user environment, a tree-structured file system

eminently suited to image processing, modular software structure, a complete

software control system for system and applications programs, program

development aids, documentation aids, and interfaces to all peripheral devices

and subsystems. Applications software provided with the AFES supports pixel

1-1

^.«^-»'•--'••I»**-« -^'•/•-*'•-•'-..-" -• . _• •_• -• • .-• _ - -• j „• -i ,I,JJ ,

W! iq^^^^m^m^mm^*m^^—~^—*—^-*—*-^-~IT~r Hi • l MV m t • , • , •; -i . j . i . r y • i • . • •• •

measurement extraction; pixel classification via statistical pattern

recognition; image preprocessing, enhancement, and filtering; image warping,

resampling, and point positioning; and symbolic image processing via a rule-

based inference system. All of these capabilities are available within the

APR software configuration and have been augmented by a considerable number of

enhancements and additions.

1.2 SCOPE

The scope of the APR effort includes extensions to the AFES software to

support a variety of approaches to target detection and identification. '

Additional pattern recognition tools, previously developed as part of the

OLPARS, were also implemented. These consist of measurement evaluation and

structure analysis for use in target classification experiments. Software was

also implemented to permit generation of DLMS-type feature manuscripts and

feature analysis data tables including both cultural and tactical targets.

Specific extensions to the AFES developed under APR include:

• modification of the classification logic structure to permit

multilevel classification of pixels and objects,

• extension of measurement extraction and classification software to

permit statistical and symbolic classification of objects,

• extraction of objects based on edge-detection methods in addition to

pixel classification methods,

• implementation of a new symbolic image processor (NEWSIP) which

supports probabilistic inferential reasoning,

>
1
|

1-2

• '-* '-» *-• '-» '-» *-* '-* J '-* '-* *J "•* '•<•-'-'- -•'-"-'•- ..* .--»-.-.•-• • T- . -i -•-.., . . • . . ,„_, . . | , .,.•.... i i ._ I.

^——!—r——r——~-~— •I -• • -^ "^ _• "¥ "

• implementation of the structure analysis and measurement evaluation

facilities of the OLPARS within the IPS environment, and

• implementation of interactive, semiautomatic functions for

generation of DLMS feature manuscripts and feature analysis data

tables.

1.3 REPORT ORGANIZATION

Section 2 provides a brief overview of the IPS hardware and software

configuration and, also, a top-level description of the APR enhancements to

the IPS. More detailed descriptions of the enhancements may be found in the

remaining sections.

Section 3 is devoted to symbolic processing and covers the data

structures, data access routines, and data processing routines which support

NEWSIP. This section also discusses and gives examples of the DLMS output

generation capabilities.

Section 4 contains descriptions and examples of various pixel and region

processing routines added to the IPS; these routines include edge detectors,

edge filters, classifier output filters, and region measurement extractors.

This section also describes the OLPARS measurement evaluation and structure

analysis capabilities.

I

I

>,

Appendix A, entitled "User Guide to Knowledge Engineering With NEWSIP,"
j

contains a tutorial-style description of NEWSIP and examples of rule base '•

development.
•

Appendix B, entitled "NEWSIP Rules Syntax," provides a formal description
I

of the rule syntax.

•
•

1-3 .-<

" 1

."•' ^ .-.•'•".''.'.•.••.""•. '••"•. •

mmi^^^^^^—-^-m -^^-f • i »i - i » . - .

Appendix C, "APR Rule Bases," is a collection of rule bases developed

under the APR contract.

1-4

- » - *\ *« ^_ » « •*«•** • ' • •
•A*^" *-f '-*'-»* * "-* *•» -*.-i-* '-j •_•* * .— _- : -J mi — . - _ ml . -1 •- -*•- -*- -- - — • • " -»

ww^^wgyw^^^^^^^l i i. i. !.'_•. i, .'.V'1.'.'.'•"'.'-'-'- !*•'.* •'• .'• .*•"'•':'•":••':•-•:•-.:"• 7-..•-. ••..'/•..••.'.••.^/•"•;

2. SYSTEM OVERVIEW

The APR software was developed as a series of enhancements to the RADC

Image Processing System (IPS), which, in turn, was developed by PAR Technology

as the Automatic Feature Extraction System (AFES) under RADC Contract F30602-

78-C-0080. The APR enhancements to the AFES are designed to support 1)

automatic detection and identification of representative sets of features from

multisource imagery and 2) production of graphic and tabular representations

of those features. Earlier PAR work in this area includes the Image Feature

Manuscript Generation (IFMG) effort (RADC Contract F30602-78-C-0017), in which

various techniques were developed for generating, categorizing, and editing

feature boundaries.

The subsections which follow provide a brief overview of the IPS hardware

configuration and its processing capabilities, followed by a description of

the APR enhancements to AFES.

2.1 IPS HARDWARE CONFIGURATION

The RADC IPS hardware is composed of two major subsystems, the master

processor and the display workstation. The master processor functions as the

vehicle for program development, data storage, and many processing operations.

The display workstation configuration provides the main human-machine

interface for the accomplishment of image exploitation.

2.1.1 Master Processor

The master processor is a PDP-11/70 minicomputer with a variety of I/O

devices, storage units, and processing resources (Figure 2-1). Input imagery

may be provided on magnetic tape, and tape drives are provided for access and

copying of image data. Although not included in the IPS, the AFES design

includes 1) a scanner/plotter subsystem which is linked to the processor via a

2-1

'" •' ••'"•»''<* •-' •-» '^ " -»" •* '-* •'-» '> ~> •--»• •-'- ••> '-> '-* '-•• '•* '-» -• '-* "-» -- '-' •-« • '-• - - - - ---•••»-•-•----•-:---•- -1 • -

..rrrr^T^^T" • w r .

A s
i

<

«
S «
«
4

- ü •OO!
Mi 5
* — o
2i(X s ttl

V

*8 £\
01 s

iicy
W

0
t c o

a
0 a i _z 5 tu z

<3o

•M

S-
3

f • • S <»-
1
1.

o o

e a.

t—(

o2 at i

^2 2
Hl Q 3 a>
t- t- u. •

t a

S Ff
m 5 i > z
o>-2 <*o
SS£ -JOC-
f B Hl 1 2*2 • < o 5 S

i

•i
-.

2-2

. • • • ».'l m'i m ' «if • ' • '• • • ••«»* mii • «---••-"•-- '-• '-- -• '-• - - - - - .-.-..-.-. .-••--. > - . - . . • .. J

**MP««ap*Mwvvp»fv^^MP^^^>^w-^ i.i > i ii.i i p i.i HI

communication link and 2) a dual-ported disk system so that film, map, or

chart data may be digitized and stored en the disk and, then, be utilized by

the system as needed. A second large-capacity disk system stores source

images and intermediate results of image processing functions executed on the

master processor. Processing resources include, in addition to the

capabilities of the PDP-11/70, a floating point array processor, which is used

to perform certain types of tasks involving numerical computation on large

blocks of data.

Associated with the master processor are a number of CRT terminals.. They

are designed for the user who wishes to edit and compile programs and to

execute on the master processor, programs for which image display output is

not needed. UNIX, the multi-user, time-sharing operating system for the

master processor, can accommodate a large number of these terminals without

noticeable degradation in response time.

2.1.2 Display Work Station

The Display Work Station (Figure 2-2) provides the full complement of

image processing and interaction capabilities. A color display system is

included, on which the user may view source imagery or the results of

processing operations. Two high resolution monochrome display systems and a

stereo viewer are provided to allow display of stereo imagery. Each display

system has a trackball, hardware cursors with function buttons, and overlay

memory to accommodate operator interaction and display of auxiliary data. A

Hewlett Packard Random Scan Display accompanies the displays. This is used as

a status display to provide the user with relevant information, such as status

of background processes and the name of the image that is associated with a

particular display channel. In addition, a Dunn color camera system is

interfaced to the color display so that hardcopy of source or processed

imagery is producible in an efficient, convenient, and timely manner.'

2-3

• ' • I • • • . -—•

i

J
3

1
0
2
3

X
 1

0
2
4

R

A
N

D
O

M

S
C

A
N

G

R
A

P
H

IC

O
IS

P
L

A
V

)!

2-
2

D

is
pl

ay
 W

or
ks

ta
tio

n
C

o
n

fig
u

ra
tio

n

-J / / \ (]_)
• s

T
R

A
C

K
B

A
L

L
S

 »

,
W

IT
H

F

U
N

C
T

IO
N
 B

U
T

T
O

N
S

Si

F
L

O
A

T
IN

G

P
O

IN
T

P

R
O

C
E

S
S

O
R

 E:
e
Ik

7
•
K
o

E:
B:

it
MXW

X»

m

1
O
K

<*

X
O

•»•
a« <w
28 c

is
s

•
 1

2
*

C
O

L
O

R

O
IS

P
L

A
V

If

X
m

E

•
1
•

CD £
3

•

•if
a

QS

•
•

!i H
• >:

•»
a

•• c<

eoS
»JO e

a

tV

2-4

• s-•- • - «-•• *-'«• «-• *-*• •-- •-'• ^M^X. •'^•->- -•- - ' - ••-•-••

1

^^^W^^W«"^«^T^T^V""«""^-

The display configuration provides the environment necessary for

integrated testing of image processing functions and for design and

implementation of the types of software systems envisioned for production of

digital maps. It is controlled by a PDP-11/3^ display processor which also

provides a minimal processing capability. In particular, operations which

require frequent and/or random access to image data, but which do not perform

complex computations, are well suited to execution on the display processor.

These operations may include histogram computation, contrast modification,

edge detection, simple geometric transformations, and other preprocessing or

enhancement operations. Image data may be transferred to and from the master

processor via a high-speed parallel data link.

Facilities for operator interaction for the display station are designed

to minimize the knowledge required to use the system. Commands issued by the

workstation user may refer to processes which are executed on either the

master processor or the display processor. To simplify operations, incoming

commands are automatically sorted by the display processor's command

interpreter. Those which run on the display processor are executed

immediately, while others are transferred to the master processor's command

interpreter.

In general, programs which require operator interaction are executed on

the display processor. In some cases a single command may 1) start a process

on the display processor which will interact with the user to obtain input

data or parameters and, then, 2) start a "batch" type process on the master

processor to perform a computation using the user's input data. Most user

interaction occurs via trackballs, cursors, and pushbuttons.

2.2 AFES/IPS PROCESSING

Processing in the AFES is of two general types: image processing and

program development. These objectives are supported by commands available in

2-5

t^^^^**^^mmm^\ß_ .• 1.1. ,i.„i•_• •!M• I ".i'

B

the system. Two types of commands exist in the AFES: UNIX commands and AFES

commands.

UNIX commands provide a wide and powerful selection of user capabilities.

They provide system status information, aid in program development, and

manipulate files and data. UNIX commands are supported by the UNIX command

language, also known as the shell. The reader can familiarize himself with

UNIX commands by referring to the "IS/1 User's Guide" provided by the

Interactive Systems Corporation.

AFES commands more closely support the goals of image processing than do

UNIX commands. In image processing, AFES provides tools for Statistical

Pattern Recognition, as well a3 tools for research in the field of Artificial

Intelligence. Some AFES commands allow for photogrammetric processing of

imagery. AFES commands also exist for input processing of imagery, general

image manipulation, program development, administrative purposes, and utility

functions.

AFES commands are arranged in menus according to the function they

perform. The available menus are:

admin - AFES administrator commands

class - Classifiers

disp - Display commands

init - Display initialization commands (accessible on the 11/34 only)

input - Commands used to enter images into the AFES environment

2-6

•>VW

mi^^^m^m—mmmm^mrm-mjmwimmmmwm* Mil »(, 11 p r V v ^ ^ • • • • . • i t -t . , -i « t r-

itt - Command which make use of Intensity Transformation Tables (ITTs) on

the DeAnza displays.

meas - Measurement extractors

mens - Mensuration commands

misc - Miscellaneous commands

prog - Program development commands

symb - Symbolic processing commands

tst - AFES testbed commands, including many used in Statistical Pattern

Recognition.

The reader should refer to the "User's Manual for the AFES" for details

concerning AFES commands.

2.3 APR ENHANCEMENTS TO AFES

The initial implementation of AFES allows a user to classify an image

according to a pixel method and to perform segmentation of the image into

homogeneous regions. This is basically the type of classification needed to

determine Surface Material Category (SMC), a necessary entry for all features

in the Feature Analysis Data Table (FADT). But, extraction of the types of

features required for APR requires much more detailed segmentation and

classification, as well as contextual information. Therefore, APR supports

three kinds of statistical methods: pixel, region, and edge. All of these are

independent of symbolic processing, but are available to the symbolic

processor. In addition, pixel and edge methods have the capability to either

create or modify the symbolic representation of the image.

2-7

-^^Am£.••.*.*., *-'- *-^ *..*:. *_«. *..".*••*"• I«. J1^ ^ -"- •'-. V. t'^j*» •"- JV . ^ V- m.\ ..'- •'->'. •.'.>*. «.*^ «''- -.'- ». - ."-»-«._», . _ .. _ i'_ . •'. ^ _ . . • '- -.'- .' » ^'. i _ - _ -. - -

^•^ •'*'•' •'• •'' 11" '•. • i •>•'-! •_• »• '•• T»; - •.-

2.3.1 Method Files

The concept of "method files" was developed on AFES to allow flexible

experimentation within the paradigm of decision theoretic pattern recognition.

Under AFES, the method file approach supported only "pixel" methods. "Pixel"

methods describe the techniques used to classify pixels; measurements are

extracted for each pixel using the window code, and a class is computed for

each pixel. A typical method file for pixel classification is:

measurements:
avg 3
lapl

classifier:
mahal [optional arguments]

class:
trees

regions:
trees 1
trees2

class:
water

regions:
lakel
riverl
river2

class:
urban

regions:
industry1
residential1

comments:
<user comments>

"Region" methods have been added under the APR effort to describe the

techniques used to classify regions. Measurements are extracted for some

2-8

•-•-•-•-• » ^ • - « - • - » - - - * - . _• .- ^M *. 1- ~ - .. ' -

ima^^^tt* ." .• .• .• -m

regions, and a class is computed for those regions. Region methods are thus

analogous to pixel methods, except that regions are measured and classified

rather than pixels.

"Edge" methods have been added to describe the techniques used to detect

edges. In order to expand the method capability to incorporate "region" and

"edge" methods, the current method file was modified to contain a new section

called "method_type," where the user indicates either "pixel," "region," or

"edge".

The following is a representative region method.

method_type:
region

measurements:
area
length

classifier:
mahal
(training set)
class:
target

regions:
planesl

class:
clutter

regions:
clutter 1

comments:
This method recognizes airplanes from clutter.

Edge methods do not include a "classifier" section; rather, the region edges

are extracted directly and used to form the symbolic data base. An example

follows:

2-9

t

v.v
-*«-•• -'• -' •-*• -'• -' -'• .'••'•.'• •*-• -• - - •' •-•/•-• •_• •_ -• -• - -- .- . . _ — .'.•-.-..>'--.••.>.»•-----<.•:.- - i •-•-•- - *

I

method_type:
edge

measurements:
wiener_edge f
edit:
edge thin3

2-10

»

*

comments:
This is an edge method using optimal Wiener filtering.

Another section called "edit" has been added to indicate automatic image

editing techniques which may be applied after classification and before

segmentation. These include nmode_fliter" for pixel methods and "edge_thin"

for edge methods. Since region methods are applied to images which have

already been segmented, editing techniques are not appropriate.

2.3.2 Measurement Evaluation and Structure Analysis

Currently in the AFES system there is no capability for a user to

evaluate the effectiveness of various measurement extractors. He does have

the output of the confusion matrix, but this only lets him evaluate the

effectiveness of the measurement set as a whole. Under APR a subset of On

Line Pattern Analysis Recognition System (OLPARS) referred to as "measurement

evaluation" and "structure analysis" has been implemented. Measurement

evaluation allows the user to assess the accuracy of classification logic

which has been developed for a particular set of pixel-based or region-based

training data. Structure analysis can either be used to view classification

results of region or pixel data in measurement space or be used to restructure

training data for region methods only. The available output displays, such as

histograms, are supported on the Tektronix display which is part of the IPS

configuration.

It should be noted that measurement evaluation and structure analysis are 1

based on trainsets which are representative of classes as defined in the

method file.

'

I I I ' I . • 1 • • •—• ' • • 1 • • *- J—z— — • ^—»7

2.3.2.1 Measurement Evaluation

At some stage in the pattern recognition process there exists a training

set of vectors of dimension L for each class type. The eventual success of

classification depends on the discriminatory power of this set of L

measurements. In general, it is also desirable to use the minimum number of

measurements to achieve a satisfactory solution. The two means of evaluating

methods implemented in APR are the "discriminant measure" and the "probability

of confusion measure". The discriminant measure is particularly useful for

ranking a set of L measurements when the class conditional probability

distributions are approximately unimodal. It is the fastest to compute, but

can produce misleading results when the data classes are not unimodal. When

non-unimodel data classes are involved, the probability of confusion measure

is recommended. It is valid for any probability distribution, since it

essentially measures the overlap of class conditional probabilities. The

output options for either measure are:

1. Rank measurements for a specified class,

2. Rank measurements for a specified class pair,

3. Rank classes for a specified measurement,

4. Rank class pairs for a specified measurement,

5. Union of best measurements for each class,

6. Union of best measurements for every pairwise set of classes, and

7. Rank measurements distinguishing all classes.

2-11

... _ -«••-! -.—^—»2—•' .—• . •—• •••-.••» Ill . -1 — .* .-» I » \ .1 » -•vJ

*wpB^^pj^^"^^^«i^pw»w^«-^»

In addition there is an option to display histograms which show the

frequency of occurrence of the classes across the range of each measurement.

These histograms are useful in determining the value of a measurement in

discriminating the classes in the data set. The user has the option of

displaying one or more of the histograms on the same display.

2.3.2.2 Structure Analysis

Structure analysis assists the analyst in determining the modality of

each class as represented by the corresponding trainset. There are two

primary uses for structure analysis in the APR system. One is to allow a user

to sub-divide a trainset, as defined in his method, into two or more classes.

Once the user views the plot of trainsets, he/she can restructure the plot

into two or more sets representative of two or more classes (or throw one

away) if it does not cluster nicely. These sub-classes could then be

recombined by NEWSIP as deemed appropriate by the rules. The second use for

structure analysis is to allow a user to cluster the regions of a segmented

image into classes. This is one of the ways by which one may define test

objects to be used in "region methods".

APR provides one-space and two-space plots of projections on the:

1. Original feature coordinate axis,

2. Arbitrary vectors, or

3. Eigenvectors.

The user may draw a piecewise-linear convex boundary for the two-space plots

in support of the two goals mentioned above. Examples of structure analysis

plots are provided in Section 4.

2-12

- ••«- • •- - - - - - • - - '- • 1^« L^^~ k^2. . . ^ -"' -'» - _. _. _•_-_• - . '-.

2.3.3 Classifier Training

The AFES has been designed to allow a user to train a classifier

according to a method which is easily modifiable. This has been accomplished

using method files, which specify the exact type of processing required for

pixel classification. This capability was confined in the AFES to pixel-based

methods (or simply pixel methods), where "get-region" was used to outline

sample training regions. This concept has been extended with APR to region

classification, whereby statistical pattern recognition is applied to entire

regions, rather than to just individual pixels. The processing required to

classify regions is specified in region methods. To obtain sample training

sets for region classification, one executes "get-object". This program

allows the user to specify entire regions or objects to be included in

training sets for region classification. This program must be executed after

segmentation.

A new command on the 11/70 allows a user to run structure analysis on the

regions in the symbolic representation of the image. One could use this

technique to assign regions to the proper region directories. The user has the

capabilities of reviewing the regions thus defined on the DeAnza display and

of removing any unwanted ones from the test set.

2.3.1 Classification and Segmentation

Due to the modular approach to classifiers which AFES utilized, no

changes were required under APR to the actual classifier code itself, either

in C to run on the 11/70 processor or in AP code to run on the array

processor. There have, however, been changes to the "classify" command

required at the shell level in order to support the "region" and "edge"

methods. There is an "edit" command, which may be listed in the edit section

of the method file which is applied to the classified output. There is also a

"segment" command to convert the classified output of either a pixel or edge

method into a symbolic representation. A major change in the system allow?,

2-13

-.-••• - -_^ . . .- .

^TTTTT*"!"^!*-.*^"-. •" '•"-.'-•- *' -". V."-V-"."."^"-".">.' niii'.'iv'vi

the Symbolic Image Processor to execute any, or all, of the three types of

methods on a region.

Segmentation, like classification and edge detection, may be performed on

individual regions. The user may specify the region to be segmented

(resegmented) as a parameter. Initially, before an image has been segmented

even once, region 1 is defined as consisting of the entire image. The first

time an image is segmented, region 1 is segmented.

Input for segmentation consists of the symbolic data files plus either

the results of classification or the results of edge detection, possibly

modified by editing. Segmentation occurs on the PDP-11/70 rather than on the

PDP-11/34 (as was the case with the original AFES). This change permits

invoking the segmenter from within the symbolic image processor without the

need to transfer data from machine to machine. The output of segmentation is

reflected in updates to the symbolic data files. This is the only way in

which the segmenter makes public its results.

Edge-based segmentation is supported in addition to pixel-based

segmentation. This edge-based technique is helpful when pixel-based

segmentation is inadequate or inappropriate, as may be the case when source

imagery comes from infrared sensors, when there is little texture in the

image, or when there is only a single band of information. Edge-based

segmentation may also be used for segmenting urban areas when it is impossible

to recognize all possible land use classes, yet it will suffice to outline

buildings, shadows, vehicles, etc.

2.3.5 Symbolic Data Handling

Images are described symbolically in symbolic data files. The symbolic

data files for an image contain information sufficient to define the topology

of the image and to define the attributes of regions and edges within the

image. All access to the symbolic data files is coordinated through the

2-1U

-«-••'-•«— »^ --,•,- B---»-- -•- - ~. . -:__._-. .•.-•_.••• - -- - . 1 1 — — . . —

wmm^^^^^^^^^^^^^^w——* i. . i." •- • • .••••'. '..ill...

attribute manager.

One of the keys to effective use of symbolic image processing is an

adequate symbolic image description. The adequacy of a symbolic image

description scheme is, in turn, dependent on the file structure supporting it.

The symbolic image representation scheme and file structure impose as few

restrictions as possible on image processing while providing a maximum of

versatility.

2.3.5.1 Symbolic Image Representation

Images in APR are represented symbolically as a semantic network. The

nodes in the network correspond to the edges and regions in an image and are

associated with the attribute values for those edges and regions.

The symbolic representation of an image is used for three purposes: (1)

to aid in creation of training data sets of homogeneous regions, such as

tanks; (2) to allow region classification of a segmented image; and (3) to

respond to "artificial intelligence" requests from the New Symbolic Image

Processor (NEWSIP> to extract region attributes, classify and resegment a

region, or modify the symbolic image description.

The relationships among the regions and edges in an image are the most

important components of the semantic network. The description of a region

always includes those edges that make up its boundary, and the description of

an edge always includes those regions on either side. If applicable, each

region has pointers to its offspring regions and its parent region. Each edge

has a pointer to its offspring edges and its parent edge, if applicable.

Offspring regions arise whenever regions are resegmented. The region

being resegmented is divided into a set of child regions, each of which may be

further resegmented. Edges cannot be resegmented in the same way as regions

can, however, it is possible to define an edge that is part of another edge.

2-15

t-j.-» •-•^--••"•"--••-•••••.•--. •-••. .-.---.•..-.•.•• •

*"P

There are two special regions that are predefined in each image. Region

1 is the entire image. The first time the image is segmented, region 1 is the

region being segmented. It is an ancestor of every other region in the image,

except for region 0, the other predefined region, which corresponds to the

rest of the world not present in the current image. Region 0 cannot be

displayed like other regions, of course, as there is no data for it. It is

included merely as a matter of convenience.

Each region and each edge has a set of attributes associated with it,

expressed as attribute codes - attribute value pairs. Attributes (such as

area, length, width, perimeter, etc.) are used to describe regions and edges

in a manner that is well suited for rules. Most of the interesting properties

of regions and edges are represented as attributes.

2.3.5.2 Attribute Manager

Central to the issue of symbolic data handling is the process referred to

as the "attribute manager". All accesses to this data representation pass

through the "attribute manager". This process performs many of the same type

of functions which the "shell," the UNIX file system, and AFES modules

currently handle in the pixel domain of image processing in the AFES. For

example, the attribute manager determines if a measurement has been run for a

region and, if not, extracts it and enters it as an attribute of the region.

2.3.6 Feature Recognition

Feature recognition is the crux of APR. Everything else in the system is

subservient to it. Methods, training, structure analysis, classification,

editing, and segmentation merely make up the front-end for feature

recognition. Of course, they are all very important. Without such a battery

of powerful techniques, feature recognition would have little chance of

success. It is the presence of these tools that makes everything else

possible.

2-16

. .v.- V J..'.-'-". V- . - <"- »'- ."- •'- i - » - i'- • - • - ..A • • - - •". - - • • - ^_. . • . i . . m.

"P r • • ~~

Symbolic data files, together with image data files, comprise the input

for feature recognition. Two approaches to feature recognition are supported:

rule-based and statistical. Outputs of feature recognition are modifications

to the symbolic data files and the creation of a DLMS data base.

2.3.6.1 Rule-Based Approaches

The symbolic image processing enhancements implemented within APR have

been called NEWSIP. The NEWSIP rule-based system was designed to allow the

use of probabilistic, inferential reasoning for image understanding in the

AFES/RWPF environment. Like most expert system frameworks, NEWSIP consists of

two main components, an inference engine and a rule base.' The inference

engine consists of the software for a general mechanism to draw and explain

inferences. The rule base is a text file consisting of a set of conditions

and actions which provide the knowledge for particular inferences to be made

to solve a problem. In the field of Artificial Intelligence, the task of

building a rule base is known as knowledge engineering.

A rule base consists of a set of conditions and actions that describes

the inferences which can be made for solving a problem. A single rule

consists of an "If-Then" statement, relating a set of antecedent conditions to

a consequent hypothesis. The certainty or truth of the consequent hypothesis

depends upon that of the antecedent conditions. The antecedent conditions may

themselves be the consequent parts of other rules. For example, the

statements,

If E1 and E2, then H1,

If H1 or E3, then G1

represent two abstract rules. E1 and E2 are antecedent conditions for H1, and

H1 and E3 are antecedent conditions for G1.

2-17

.••*.•.•'.".•"•.•"•••••-•••-• . - - - - - AiAädi t_^_u

^^^ 1 > • • ' • • ».

NEWSIP uses an inference network (inference net) representation for its

rule base. If the two rules of the example above made up an entire rule base,

they could be thought of as an inference net that can be drawn as:

I E3 I

The nodes in the network represent the individual antecedent conditions and

consequents. E1, E2, and E3 are considered evidence nodes; H1 is an

intermediate hypothesis node; and G1 is a goal node.

The labels of evidence, hypothesis, and goal are assigned by the user

when building a rule base, but are usually reflected in the structure of the

inference net. Evidence nodes are the leaves of the network, having no

incoming arrows representing inferences. They are associated with some test or

measurement to be performed on an image. Goal nodes are the roots or sinks of

the network having no outgoing inferences. (As will be described later,

however, a node like H1 may also be considered as a goal). The arrows between

nodes of the inference net represent the antecedent consequent relationships.

The labels of "and" and "or" applied to H1 and G1 show the kind of

relationship between a node and its antecedents. In the probabilistic

inference mechanism that NEWSIP uses, the arrows, or links between the nodes

of the inference net, also represent paths along which probabilities are

2-18

*•» *•** -*,*-'*'-^<"-'*'j'*-^--J- •-•• -*"'-f '-• •-- 'y'--» •--''-•'•-»'^'-l-' -» •-•--•••_• ,-• •.- •-• •-•. J -> •-• -•-•-•
• - ------- - - - -

•^PT-~^*"'

propagated, and each node has a probability associated with it.

The control mechanism of the NEWSIP inference engine (as applied to the

above example) can briefly be described as follows. Assuming that the rule

base has been coded in the proper format, invoking the NEWSIP inference engine

will cause 1) the rule base to be read in and parsed for syntactic correctness

and (2) an inference net representation to be formed internally. Next, a goal

node will be selected for consideration. (For this reason, NEWSIP is

considered goal-directed.) In the example, only one goal node, G1, is

available. Having selected G1, the control mechanism now tries to determine

its certainty. To do this it looks for evidence nodes that affect 61. This

process is recursive and depth-first. The immediate antecedents of G1 will be

considered one at a time. If the first one considered is not an evidence

node, its antecedent nodes will be examined. So in the example, H1 might be

selected as an antecedent for 61, and then E1 could be selected as evidence

for H1. At this point, whatever test or measurement associated with E1 is

performed and the certainty of E1 is determined: E1 turns out to be either

true or false. This certainty is now propagated through the inference net.

Probabilities are updated for all of the nodes affected, directly or

indirectly, by E1. In this example, H1 and G1 will be affected.

Now the control mechanism iterates. G1 still needs further consideration

since other evidence remains to be investigated. H1 also has not been

completely investigated, so it would be considered again. E1 has been tested,

so the test for E2 would now be invoked. The resulting probability would be

propagated, and the process continued with another iteration (which would this

time investigate E3). After E3 has been considered, no further evidence

remains to be investigated for G1, and NEWSIP would halt after having

performed (or not performed, depending upon G1's probability) whatever action

is associated with G1.

2-19

..'•"•".•"„•'.-•'- ••"•••.••. . . '• • • •••.-'. • •_ . •

•W?P?*^^—I—r—r—- , » . w • h 7 • /» ; •

Three kinds of actions are currently possible: to apply a segmentation

method to the current region, to delete a region from further processing, or

to assign an AFES/RWPF region attribute value to the current region. The

rules of a NEWSIP rule base are applied to one region at a time, and the one

being considered at the moment is called the current region. Evidence tests

are limited to the evaluation of conditions on sets of regions, or sets of

edges, or some special predicate functions. Conditions are expressed as

arithmetic relationships on region attribute values, and sets of regions are

specified in terms of a quantity of neighboring, offspring, parent, edges, or

included relationships to the current region being examined.

A more detailed description of NEWSIP is provided in the NEWSIP document

attached as Appendix A.

2.3*6.2 Statistical Approaches

Statistical feature recognition is based on regions and, thus, is

intimately tied to symbolic image processing. Statistical recognition of

features may be either invoked from the shell, as an APR top-level command, or

invoked from within NEWSIP, as an adjunct to or part of rules.

Input to a statistical feature recognizer is a region or set of regions

to be classified. The input regions must be the result of a previous

segmentation, which occurs naturally when the region classifier is invoked

from NEWSIP. Rules are capable of invoking a statistical region classifier,

for instance, to find airplanes or tanks. Of course, if desired, a user can

also invoke a region classifier if he knows about specific target regions that

are to be input.

A method of region classification must be specified for classification to

occur. This method will have been defined and trained previously, as

described in earlier sections of this document.

2-20

w^* • •-••-'

Output of statistical region classification is the assignment of new

class attributes to the regions classified. The new class types are assigned

by interacting with the attribute manager. These new classes are examined by

querying the attribute manager.

Features recognized in this way are not immediately suitable for

inclusion in the Feature Analysis Data Table (FADT). Mere region

classification does not provide enough information to fill out an entry in the

FADT. Therefore, region classification will not by itself effect the FADT.

However, NEWSIP may use the results of region-based classification in its

decision logic when producing the FADT.

Region classification is most useful for recognizing small features,

especially when complicated shapes are present. Tanks, airplanes, and other

military vehicles seem to be the best candidates for region-based

classification.

2.3.7 DLMS Output

The final output of APR is a FADT and a feature manuscript, two

components of the DLMS. The FADT is generated by NEWSIP. This can be done

interactively with the operator performing the feature recognition or

automatically with rule-based feature recognition.

The FADT contains fields for surface material category, height,

structures per square nautical mile, feature code, etc. Most of these fields

can be determined by rules, especially since some values are standardized.

For example the height of Surface Material Category (SMC) 6 features (water)

is always set to zero. The orientation of non directional features is set to

360. In fact, the DLMS specifications are well suited for encoding in rules.

2-21

'.' *..—* * • * • * - ~ - ~ - -*''- • • -•-•. - - - m ^ *• • - • -» - - - -• . . * - -•

•"•* • • "—» • » •. I •• •'! •.-.—"

Feature manuscript generation is very simple. There is no need to create

a new file for the feature manuscript since all needed information is already

present. The manuscript itself is a set of graphics overlays delimiting the

features, which are displayed in the DeAnza overlay memory.

FAC numbers, used to associate FADT entries with the feature manuscript,

can be displayed using the DeAnza display annotation memory. The annotation

memory can be blanked out, if desired, allowing the operator to see features

that might, otherwise, be obscured by the FAC numbers. Additionally, if

desired, the operator can display the image together with the manuscript. The

manuscript then appears to be overlaid on the image, allowing quick

verification of the accuracy of the FADT and the image feature manuscript.

2.4 APR MENUS

The new capabilities added to the AFES in the course of the APR effort

consist of modifications to some existing commands and, also, addition of new

commands. Table 2-1 contains descriptions of all commands added to the AFES

during the APR contract.

2-22

. %» !•'- a. ..^._^.r-^..^._^.-_^-._.. .-..-. -

r^^^T*?* -i »i - • i •. ".••••;-"• v " -"Ti

Table 2-1 APR Commands

Page 1 of 3 Pages

*** Program Development »**

mod_afea(mda)

apr_sys(aps)

aprupdate

ace

- start parallel development of an afes routine

- modify the apr makefile, menu, help...

- update the apr "mods" directory

- compile file with apr/afes includes and libraries

*** Symbolic Data Manipulation ***

newsip - execute new Symbolic Image Processor

init_syrab - initialize symbolic data files

prt_symb - print information on symbolic data files

edit_symb - edit and manipulate symbolic data files via attribute manager

segment - segment an image or resegment a region

••• Symbolic Methods •••

enter_symb(ens) - create symbolic method and enter rules

mod_symb(mds) - modify rules for symbolic method

*** Region Measurements ***

area - compute the area

perimeter - compute the perimeter

p2overa - perimeter squared divided by area

length - length of minimum enclosing rectangle

width - width of minimum enclosing rectangle

ave_inten - average intensity of the region

moment bnd - moment of the boundary of the region

§

•:

•

2-23

•d'a'i'a*»'*.'» «•»•••>••! »JSu •-•-•- ••-•--•••..•.••..-.•• _^. . - •-•--•
_ , ' .

• J • 1 •!• I • . • J ' J •• • •••»••••• » ••••'»• . .,„.,.

Table 2-1 APR Commands

Page 2 of 3 Pages

• Edge Measurements •**

length - the actual length of the chain code

distance - the distance between the endpoints

edge_complexity - the complexity of an edge

•** Region Methods ***

get_object(gto) - select object training samples (11/3^ program)

load_reg_trn(lrt) - load object region training files from mask files

obj_reg_edit(ore) - examine and/or edit obj_region training files

• Edit Programs »*»

mode_filter (mdf) - mode filtering of a classified image (noise cleaning)

edge_thin - thin edges iteratively

*** Measurement Extractors ***

wiener_edge - optimal wiener edge detector
sobel_dir - sobel gradient operator with direction added for filtering

dir_fliter - directional filter, must follow sobel_dir or some filter

mdmf - maximal directional matched filter

edge_fill - edge filler, must follow sobel_dir or some filter

squeeze_i - image compression

expand_ipr - image expansion by pixel replication

*** Measurement Evaluation / Structure Analysis ***

meas_eval(mev) - measurement evaluation via discriminant and probability

structure(str) - one-and two-space structure analysis

2-24

M I I Ai • . . . ^i . . . , . L . ^ : J —a i

.' wmm • i i '. ' J •. • i •. 'T'^T^T*^"^^'-* -','."1 l -1 .^"*t .*•"*• .*•','. •." '.'»•'.•'.'»•^'•'•.'.•.••••'•••'•I

Table 2- -1 APR Commands

• Page 3 of 3 Pages

••• DRLMS Generation »*»

fadt - feature analysis data table

bldjnan - interactive feature manuscript generation (PDP- • 11/3H)

2-25

•-• •. -." •

•i..-.fc-'iVi,'';^;.V.'i.'-.'-:.V. .:\;\-_\-J.-J.-:.\:* -•"--. -• - . J-...-'. •^.^•_.-^..;.-i'. •...•...'. , _L^ . • - -*_ -^t * J - .

^^9-~9^^~m*m^+^^*r*. i i J i •

3. APR SYMBOLIC PROCESSING

The primary goal of the APR effort was expansion of AFES symbolic

processing capabilities; this was accomplished through expansion and

modification of software at many levels of the AFES architecture. The

implementation of APR is most easily described from the perspective of

symbolic processing, as this provides an appreciation of the factors

motivating the various software changes. The following paragraphs discuss the

major components of the APR software. A detailed description of the new

symbolic image processor, NEWSIP, is provided in Appendices A and B. |

The principal data items used in symbolic processing - regions, grid

cells, edges, and attributes - are described in Section 3.1. Section 3.2

describes the layout of the symbolic data files and how the principal data

items are stored. Finally, Section 3.3 describes the modules that were

developed to access the data stored in the symbolic files and to generate the

DLMS-type feature manuscript and feature analysis data table (FADT).

3.1 REGIONS, GRID CELLS, EDGES, AND ATTRIBUTES

Regions, grid cells, edges, and attributes are the principal data items

that are represented in Symbolic Data Files. Regions, edges, and grid cells

are numbered starting at zero and are often referred to as rO, rl, eO, e1, gO,

g1, etc. Regions and edges together suffice to describe the topology of an

image, while grid cells provide a direct representation of an image.

Attributes further describe the regions and edges. A more detailed

explanation of each follows.

3.1.1 Regions

The following definition of a region is overly-simplified and, thus, not

totally correct, but it will serve our purposes until a better definition is

3-1

I

M

H

**' :*..•*»•/«.•"^•'i."*a.,."--'.%-'.\.': '.':'. V, ••",'," %' fAlf.'j.-.- .', .••-•. -.V. . - -•„.-. . - .. •_. • . . » ,.1

. ; • • • • •. • . •! • i •

presented later. A region is simply a set of pixels (in an image) which are

CONNECTED and belong to the same CLASS. Specifically, the pixels in a region

must be 4-connected. That means they must be next to one another to the)

right, left, top, or bottom; diagonals do not count. The class of the pixels

is usually determined by CLASSIFYING the image; this assigns a class to each

pixel. The class of a region is the class of its component pixels. Consider

the following image composed of 16 pixels. Each pixel is labeled with its

class, as shown below:

A A B B

A A B B

C C A A

C C A A

In this example there are 4 regions. One is class B, one is class C, and two

are class A. Notice that the two class A regions are not 4-connected;

therefore, they do not form a single region.

A region can have any size from a single pixel up to an entire image. A

single pixel is usually too ,small to correspond to a meaningful feature, so

such small regions are often ignored by rules. Also, very large regions may

contain many features, and therefore it is often desirable to reclassify a

large region to break it into smaller regions.

3-2

*

I:
There are two special regions whose definitions differ from that given

above. These are region 0 and region 1. Region 1 is defined to be the entire

image. Of course, it is 4-connected, but its pixels do not all have the same

class. Therefore, the class of region 1 is not defined. Region 1 can be *

considered the ancestor from which all other regions are derived. Region 0,

on the other hand, is defined to be the entire world not in Region 1.

. • •

ii. H. I i. •>|»p>«>l<i... .<• , "T —

3.1.2 Edges

An edge is defined as follows: An edge separates every adjacent pair of

regions. Each edge has two distinct regions next to it: one on each side.

Edges may have arbitrary length and complexity. Below is shown the same image

as before, with the edges and regions labeled:

e1

e3

e2

i r2 r3 !
e5 I

I e7 e8 !
e6 !

I rU r5 I

rO

e4

There are 5 regions here, and 8 edges. Edge 1 separates r2 and rO, edge 5

separates r2 and r3, etc. It is usual for there to be more edges than

regions, although this need not be the case. As can be seen, edges 1, 2, 3,

and 4 are not straight.

Each edge has a start node and a stop node, with each node defined by a

row number and a column number. They are not shown above for the sake of

readability. The start and stop nodes give each edge an orientation;

therefore, one can speak of the "left region" of an edge and, also, of the

"right region". Again, each edge will have a single leftregion and a single

rightregion.

A single region may have many edges associated with it. In the above

example, r5 has edges eU, e6, and e8. The boundary of a region is composed of

all the edges of that region. In this definition, boundary and edge are not

synonymous. However, it is possible for a region to have a single edge, as

in:

3-3

•- . • •-. • • -.

K . « , •

I,*

1

1"! •start node and stop node

•

Hj

T«

r12
i

i

i

r9 !e100
i i i
i I_I

77«—»—•...•'.«:

In this example r9 has but a single edge, e100. Edge 100 separates r12 and

r9. Since e100 is the only edge for r9, it must form a closed boundary or

loop. Iherefore, the start node of e100 must be the same as its stop node.

There is one special edge, edge 0, that is in every image. It is the

edge that separates r0 and r1. Since there is a single region inside eO, eO

must form a loop and have the same start and stop nodes.

3.1.3 Grid Cells

Grid Cells are 16 x 16 pixel bins which cover the entire image and have

as attributes the objects which cover their constituent pixels. Grid cells

are numbered consecutively, starting with cell 0 in row major order.

A grid cell has only three attribute types: point, lineal, and areal.

The value of the attribute is the number of the object of the indicated

feature type. As an example, if region 100 has pixels in grid cells 225 and

226, then G225 and G226 would each have an areal attribute with the value 100.

Grid cells allow more than one object to occupy a pixel or set of pixels

in an image. This provides an overlay capability and a mechanism for

treating, as half-siblings, objects which cover the same pixels but were

created using different methods.

Grid cells also provide a mechanism for object-driven targeting. A

rectangle (the minimum bounding rectangle for a region, perhaps) in one image

may be mapped onto another image to define a search window. This mechanism is

useful in symbolic stereo correlation and change detection.

3-4

£££ -' ••' ••" •• •• •• -.• -. v- - •-••-•'<--'»-•-''•"•-•'•-•»-•'. ".•*. •*>•.-.•".*•. •_

3.1.4 Attributes

Attributes are lists of properties associated with every region and edge.

Each attribute is composed of two parts, an attribute name and attribute

value. Attribute names are simply character strings up to 19 characters in

length. Attribute values may be long integers, floating point numbers, or

character strings up to 19 characters in length. A region may use the same

attribute name several times, so that the attribute is multi-valued. In this

case the attribute values must be compatible: that is, the same attribute name

cannot have both string and numeric values. By using attributes, almost any

kind of data about regions and edges may be represented and stored. The

following list illustrates some of the attributes that were found in an actual

Symbolic Data Base.

edge 0
rightregion 0
leftregion 1

length 2048.000000
distance 0.000000

edge complexity 270.000000

edge 1
rightregion 2
leftregion 3

•

region 0
edge 0

•' *

m

ft

,' •
," «
." «

i
3-5

•

<"«"•_ <"* *•*•"'•" • *„ • , *". *_ % "- _*• _*• . * . *

*

"•"T^^^rTC^T"*-'.'-".'-'-• '.••'•" •"-'"•'.• ••"•'-." V." •'•'

region 1
edge 0

offspring 2
offspring 3
offspring 4
offspring 5
offspring 6
offspring 7
offspring 8
offspring 9

length 512.000000
area 262144.000000

perimeter 2048.000000
ave inten 130.212173
loment bnd 313175040.000000

width 512.000000
holes 0

»

region 2
edge 1
edge 3
edge 5
edge 7

parent 1
class null

method pixel

area 11143. 000000
ave inten 17.022974

label house
holes 1

>

i

Attributes come from six different sources: segmentation, grid cells,

measurements, feature manuscript generation, the attribute manager, and the

user. An explanation of each source follows.

3.1.4.1 Segmentation Attributes

During segmentation, several attributes are defined. These attributes

may be considered to be the default attributes because they will be defined in

every image.

3-6

M

--/
• - •» ' - - -

• •. I•- I "•'' '*. -". 1 r-lr"' «'• •-• ••*-" *."."'.'

i
class The class attribute is a string-valued attribute. Every region

(with the exception of rO and r1) will have a class value.

Naturally, the value of this attribute is the class of the

region.

method The method attribute is also a string-valued attribute. Every

region (with the exception of rO and r1) will have a method

value signifying the segmentation method that was used to

define it. The class and method are related, since the class

name must be in the method file.

edge The edge attribute is present for all regions and is a long

integer. There may be many edge attributes for a single

region; each indicates the edge number of one of the edges of

the region.

rightregion A single rightregion attribute is present for all edges and is

a long integer. It indicates the region number of the region

to the right of the edge.

leftregion Similar to rightregion.

offspring When a region is segmented, the subregions that result are

called "offspring" of the original region. The original region

is assigned offspring attributes for each subregion. The

attribute itself is a long integer whose value is a region

number. Edges may also have offspring attributes. This occurs

when, by segmenting a region, an edge gives rise to one or more

subedges. Each subedge is considered to be an offspring of the

original edge. Inherent in the concept of "offspring" is the

notion that the offspring are derived from the original and are

entirely contained within the original. However, it should NOT

be assumed that the offspring of a region or edge can be summed

3-7

L ii. Ji'-V.W. -** -'• - - •-.-•-
. •.. . - • --. —-. . ••- • -.-. j. . N.

^\ •vi'.:,-J.,-,:,-v-•..•:'••.••.-• f»y»~i '• i .,• •• • i' '•• m ;» .• « .• ;• y .•» •.• ~ •- '.- .« j- • j—j u -.

to produce the original.

parent The parent of a region or edge is the inverse of offspring.

Each offspring will have a parent attribute that is a long

integer.

3.1.M.2 Grid Cell Attributes

There are two attributes which arise from definition of grid cells. The

areal attribute applies only to grid cells and is the number of a region which

contains pixels in the grid cell. A grid cell must have at least one areal

attribute. Before segmenting, all grid cells have one areal attribute with

the value 1. After segmentation, the parent region will be replaced by its

offspring in all of the grid cells which it occupies.

The resides-in attribute is the inverse of the areal attribute and

applies only to regions. The value of the attribute is the number of one of

the grid cells in which it has pixels.

3.1.1.3 Measurement Attributes

Measurement attributes are attributes that are not necessarily used in a

particular Symbolic Data Base, but which can be computed by specific programs

or routines. These attributes are computed only if they are needed, and then

they are stored so that it will not be necessary to recompute them in the

future. It is illegal to attempt to extract any of the following measurements

for region 0, since they are meaningless for this region.

area The area attribute is a floating point attribute. It contains the

area of a region in square meters.

3-8

• • •. - i. •

. i. i . i. . . k . •

^^"^ 1 V * • I I • »'* I K •' •w'.~- 71;-. '•..-- *. .-- .-.

perimeter The perimeter attribute is also a floating point attribute,

contains the perimeter of a region in meters.

It

p2overa This attribute is the ratio of perimeter squared to area,

dimensionless floating point quantity.

It is a

length This attribute is a floating point attribute that applies both to

regions and edges. For regions it is defined as the length in

meters of the longer side of the minimum enclosing rectangle of the

region (minimum enclosing rectangle is the rectangle that completely

encloses the region and has minimum area). For edges it is defined

as the length in meters of the chain-encoded edge.

ave_inten This attribute is the average intensity of the pixels in a region.

It is a floating point number.

moment_bnd This floating point attribute is the moment of the boundary of a

region. It is computed as the second moment of rotation of the

boundary about the center of mass of the boundary. It equals the

moment of inertia of the boundary. The units are meters squared.

holes This long integer attribute is the number of holes in a region. The

number of holes is in no way related to the number of offspring.

distance This floating point number is the distance in meters between the

nodes of an edge. In general it will be less than the length (see

above), unless the edge is perfectly straight. Note that for a

closed edge, the distance will be zero, since the start and stop

nodes coincide.

edge_complexity This attribute is a measure of the complexity of an edge.

is a dimensionless floating point number.

It

3-9

. • -i .'• .•.'..«. iV.U.V. i.i.i. •.• • i - - - - - _i • •-••

•'•'•'. ^ ».'•,' l"j-*,-'.';'.''-'.'- •*r-* "• '•""'.'- ' '• *: '" *••.*?.'-'. •". '•"• •r. ''• "'.'•.'\" J.V

centroid This attribute is a long integer that gives the weighted average

column of the region.

centroid This attribute is a long integer that gives the weighted average row

of the region.

3.1.4.4 Feature Manuscript Attributes

There are six attributes that are created during feature manuscript

generation. They are "labelr," "labelc," "keylr," "keylc," "key2r," and

nkey2cn. These attributes define locations of feature labels and key lines

and are used solely for creating and displaying the feature manuscript.

3.1.4.5 Attribute Manager Attributes

Some routines in the attribute manager create attributes as side-effects

of object measurements or computations which may be requested through rule-

based processing. These attributes are created to avoid redundant

computations of commonly-used information. They are computed only when

needed.

Included

This attribute has as its values the region numbers of sibling regions

which are wholly contained within it.

Oldsdf

This attribute is created by the transfer routine which copies a region

and its edges from one symbolic image to another. Its value is the string

representing the name of the symbolic image from which it was copied.

oldnum

3-10

ri-iVi .••'.IVI^I'.'I'.I.'.V.I ,il> , i .i. t^i.i.» .i. .r. .-_•-...._..._..

•*- "-•**••- 'J" ". -.' «• • . I I •

This attribute is associated with oldsdf and has as its value the number

of the region or edge in the symbolic image from which it was copied.

3.1.4.6 User-Defined Attributes

In addition to the above attributes, the user may define his own. The

attribute names that a user chooses should be distinct from the ones given

above. The type of values an attribute may hold is determined by usage. For

example, if one created an attribute with a string value, all subsequent

references to that attribute will be treated as strings. User-defined

attributes may arise from rules or from symbolic editing.

Rules are used to determine the operations to be performed during

Symbolic Image Processing. Some rules, called Feature Assignment Rules, are

able to assign attribute values to regions. The attribute values are added to

the Symbolic Data Base if the rule is invoked.

Symbolic editing allows a user to directly modify the Symbolic Data

Files. The "edi^symb" program may be executed to perform such editing.

3.2 SYMBOLIC DATA STRUCTURES

There are seven Symbolic Data Files in a Symbolic Data Base. The files

are region_hdr, region__ident, edge_hdr edge_ident, atr, atrjcey, and grid_hdr,

and are located in directory

/w/<user>/<photo>/<view>/<frame>/.symb methods/<symbolic method name>

Figure 3-1 shows the layout of the Symbolic Data Files and the relationships

among them. Figure 3-2 illustrates the entire APR Directory Structure. A

detailed description of each follows.

3-11

>•'- •'- **« -"• -'- -''. '• A •'. -\ —L^' _J^ \m. -^ -«-»-•-•---• -' •* -• -"

PPP-i " ß. t • ".»*.». »'. r r; v. i-, »• i-^

utoio«
INOEX

RIO HOR

Riaiow
ATTRIBUTE«

OAT*

•OOI
t

«DO.

OTHER
ATTRIBUTES

RIO ATR

nea IOSNT

>

RSOION
ASK

DATA

.88LD- 0«X

ante NOR OHIO ATR

-)

•oa HOR

J

EDO IOCNT

CHAIN
KOOB

EDO«
ATTRIBUTE«

DATA

LEFT
REO

RIGHT
REO

OTHER
ATTRIBUTES

BOO ATR

=:l TO REO HOR

Figure 3-1 Symbolic Data Files

3-12

.••.-••.- .• .• •.•'-/

••••••••••••••• • *-• •*•• •'—
-'-•- -'•-•--.: ^•••..•••.•„•-•^•'•^••.A.

- . .
.---•-.-«- . — . • A

i.' .i.Ulli.• .'.V<P

IK
e

o
3
oe
t-

>
OE
O
H
U
IU

N
I

«9
UJ

..;.;^.:-A. . Hi • • '• • •'- »7« S'ffi1-1-1-t-i^i-i.». -- -- - . . . J

•^pj^VPV^WfWP "''" ' '•'." •• .••! ••"•-" '.•.••-•

3.2.1 Region Ident File

Each region is represented by an entry in the region_ident file. The

entry for each region contains the enclosing rectangle and a set of mask codes

for the region. The enclosing rectangle has the lowest row and column numbers

and the highest row and column numbers for the region. This is not

necessarily the minimum enclosing rectangle, since the rectangle is

constrained to be oriented along the rows and columns rather than assuming an

arbitrary orientation.

Following the enclosing rectangle information is a set of masks. Each

mask is a triplet of numbers: row number, first "good" column, and first "bad"

column. The row number is the row number of this mask within the rectangle.

The first mask will always have a row number of 0, since it will be at

relative row 0. The first "good" column is the first column of the region on

this row, again relative to the enclosing rectangle. So, some masks will

start at column C. The first "bad" column is the first column on the row

(following the first good column) that is not in the region.

The end of a region is denoted by a mask with -1 in every field.

3.2.2 Edge Ident File

Each edge is represented by an entry in the edge_ident file. This file

contains the start and stop nodes for each edge, the number of links (pieces

of chain code) in the chain code, and the complete chain code for the edge.

The chain code describes an edge in detail. It consists of a series of

numbers; each number tells the direction of the next piece of edge. The

numbers go from 0 through 7 with 0 to the right, and proceeding counter-

clockwise. Since we only use U-connected chain codes, only the even numbers
are used.

3-14

v.v.-..
 • . I ._: . __- - - • -l- - ' - I • - • - -

v?<,w^^^w^^^*^*Tr^' .•»'„'•. i—«-

Chain Code Directions

4 - » - 0

3.2.3 Atr File

The atr file contains attributes for all regions, edges, and grids. The

attributes for each region, grid, and edge are kept separate because each

region grid and edge has a pointer into the atr file. This pointer points to

a chunk of seven attributes. This chunk, in turn, points to another chunk of

seven attributes, etc. Thus the atr file consists a series of linked lists,

one linked list for each region, grid, and edge.

There are special codes for unused attributes and for the end of a linked

list. An unused attribute is denoted by a -2 in the attribute code field.

This may be the result of an earlier attribute deletion. The end of an

attribute list is denoted by a -1 in the attribute code field.

This scheme allows for the deletion of attributes and the reuse of empty

space. It also permits the continual addition of attributes to the Symbolic

Data Base. It is common to find over 30,000 attributes in an atr file.

3.2.4 Hdr Files

There are three hdr files present, region_hdr, edge_hdr, and grid_hdr.

Region_hdr and edge_hdr contain two pointers, one for the appropriate ident

file and one for the atr file. The pointers can be used directly by disk

routines to "lseek" to the correct places in the ident and atr files. The

grid hdr file contains a pointer into the atr file.

3-15

• "-' -' *-" "-' •-'•-•."-- v' - .••_••-•._:»•- v • L" •••«•*.«•»-.•«.:.••.•...• . . , ••.•.-•••- • ... - - •'- • . . • . . d . • .—•—.—•——<

. i.j . .m •-•-• "--.-j".'

3.2.5 Atr Key File

The atr_key file contains the attribute names and formats. Each name is

allocated 19 characters, plus one character for the format. String attribute

values are also stored in this file. Attribute codes are merely pointers into

the file. The contents are ordinarily read into memory at the start of

processing to improve efficiency and minimize the number of file operations

required.

3.3 SYMBOLIC DATA ACCESS

Access to symbolic data can be achieved at several levels. The lowest

level of access uses the Symbolic Data Files directly. This access is

provided by a set of subroutines in the file "symb.c". Some fairly complex

processing and pointer manipulation occurs in3ide these routines, so it is

best to leave the complexity inside them and treat these routines as the

primitive procedures.

At the next level are programs that use the routines in "symb.c". This

includes the segmentation programs nseg_pass0.c" through "seg_pass4.c,"
winit_symb," "prt_symb," "bld__man," and "fadt" and the Attribute Manager "am".

These programs tend to function independently of the actual layout of the

Symbolic Data Files.

The highest level programs are those that the user actually uses to

access symbolic data. They are "edit_symb" and "newsip," both of which use

the Attribute Manager. These are the programs the user actually works with

and which require no knowledge of the details of symbolic data.

3-16

'4

• - «T--«l-^- •*-,«T-*l-y. •'-. «_'-V- mT^ ."-. »'- «_'. «\ ft'^ff, ^ •"- ».- *- •- •"- »'- •*-. m: ^ _»:_.'_>., »_. >.' »_•_ m- *_..._>,.•• . . «,'. . . . ^ .

^^J^^*?^W^^P^^^^^^^^T 9 m" i "i i ; • . •. . •—. f» .—r i". -'

3.3.1 Low-Level Symbolic Data Access

All low-level symbolic access is provided by routines in "symb.c". A

list of symb.c routines is provided below along with a brief description of

the symb.c functions.

Three kinds of routines are provided in symb.c. Some routines merely

open files for writing, possibly checking their size. Others read symbolic

data, and the rest write symbolic data. The routines that open files are:

init_sdf(symb_dir) Allocate space for storing necessary information about the

symbolic data files. Initialize the data in the structure.

Returns a pointer to the newly allocated storage for use by all

other routines in symb.c.

open_rh(sdf_ptr) Open the region_hdr file and determine the highest region

present.

open_ri(sdf_ptr) Open the region__ident file.

open__eh(sdf__ptr) Open the edge__hdr file and determine the highest edge

present.

opeia_ei(sdf_ptr) Open the edge_ident file.

open_at(sdf_ptr) Open the atr file.

open_ky(sdf_ptr) Open the atr_key file and determine the highest key number
present.

openall(symb_dir) Do all of the above at once for symbolic directory symb_dir.

Returns sdf_ptr for use by subsequent accesses.

3-17

H l A,.1-,. I p,'«|Pf ',• 'JMi.J •1",'J,M,'JJ ß. ' -•. .JL.J ..• — •» r- •-.-_.-. -.-^r

The winit_sdfw routine returns a pointer to a structure. This pointer

must be used for all the other routines. It is called "sdf_ptr" above,

"symbjjir" is a pointer to a character array containing the name of the

symbolic directory. The following routines read symbolic data files once they

have been opened:

rrect(sdf_ptr,"region) rrect reads the minimum enclosing rectangle information

for the given region.

rmask(sdf_ptr) rmask reads mask entries.

rcinfo(sdf_ptr,"'edge) rcinfo reads information about the chain code for an

edge from the edge_ident file, but does not read in the chain

code itself.

rccode(sdf_ptr,~edge) rccode executes rcinfo and, additionally, reads in the

chain code.

ratrcod(sdf_ptr,~r_e,~reg_edg,"'a_code) ratrcod reads in an attribute from the

atr file for either a region or an edge.

lookup(sdf_ptr,~a__name) lookup tries to match the attribute name pointed to by

its argument with the attribute names in the atr_key file.

The following routines write into one or more symbolic data files:

wrect(sdf_ptr,"region) wrect writes the minimum enclosing rectangle for the

named region.

wmask(sdf ptr) wmask writes a mask entry.

L « 3-18

•»•pü^pp^^^^^T^^^^. •.'_• •. •.'"."• •«.'•••'_». " 1 V • I •.".•-'-• I • I ••.".". • '.-."."-•»—- ; - .^-~. •*-. - . - - -

.V

$
.-.-

N

wccode(sdf_ptr ,~edge) wccode writes information about the chain code for an

edge into the edge_ident and writes the chain code itself.

watrcod(sdf_ptr,~r_e,~reg_edg) watrcod writes an attribute into the atr file

for either a region or an edge.

addkey(sdf_ptr,"keyname,"format) addkey adds the named key to the atr_key file

with the named format.

xatrcod(sdf_ptr,~r_e,"reg_edg",a_code) xatrcod deletes an attribute from the

atr file for either a region or an edge.

xatrval(sdf_ptrt~r_e,~reg_edg~,a__code~,atr_val) xatrval deletes an instance of

an attribute with the value specified by atr_val.

catrcod(sdf_ptr,"r_e,~reg_edg~,a_code~,atr_val) catrcod changes the value of

an attribute from the atr file for either a region or an edge.

3.3.2 Intermediate-Level Symbolic Data Access

Intermediate-level access to symbolic data is provided by a variety of

programs that use "symb.c". Included are some segmentation programs, some

utility programs, some DRLMS programs, and the Attribute manager.

3.3.2.1 Segmentation Programs

Segmentation programs are the most important programs that use the

Symbolic Data Files, since they do most of the creation of symbolic data.

This includes "seg^passO.c," "seg_pass1.c," "seg_pass3.c," and "seg_passU.c".

"seg_pass0.c" and "seg^passl.c" perform the first pass of segmentation

for edge-based methods and pixel-based methods, respectively. These programs

assign each pixel to one of many regions. Since they know about all regions,

3-19

^wp^w^yypjpwfwp^Mi ,IM',I ' •. J -P.
F?,' I' ' •"• ' •'• .mim'7 • .***''•' •."•*-.* •',*•"•.*'• 7" ^~ .'~ •"- -" *V- •"

it is only natural that they should add as much as possible to the Symbolic

Data Files. This is limited to "parent," "offspring," "method," "areal,"

"resides_in," and "class" attributes for regions. "seg_pass1.c" adds the

names of all classes to the atr_key file; "seg_pass0.c" adds the class

"object" to it because, when performing edge-based segmentation, that is the

only class.

"seg_pass3.c" adds mask codes to the region_ident file and assigns the

areal and resides_in attributes.

"seg_passM.c" does all edge processing for segmentation. It adds the

edges to the edge_ident file, gives them leftregion and rightregion

attributes, gives them a parent if necessary, attaches edge attributes to

regions, and attaches offspring attributes to any edges that have yielded

offspring.

3.3.2.2 Utility Programs

Some utility programs exist for initializing and viewing Symbolic Data

Files. This category includes "init_symb" and "prt_symb".

"init_symb" is used to remove all symbolic data and to create new files

containing only the most elementary data. It calls on "init_r_e.c" to

actually create the data. This program creates a mask for M and a chain code

for eO. It gives both rO and r1 an attribute of "edge 0". It makes r0 the

rightregion of eO, and r1 the leftregion. This is an initialized Symbolic

Data Base.

"prt_symb" is used to print the symbolic data for regions and edges. It

calls on "prt^symb.c" to perform the actual symbolic data access. Valid input

is of the form "r 0," "e 1," "g 1," etc. For regions, it prints the enclosing

rectangle, masks, and all attributes. For edges, it prints the start and stop

nodes, chain length, and all attributes. For grid cells, the occupant types

3-20

-..-•.-•.-.•.--.•-.•.-...-•.• -.-.•.-••.v,-.-.-v'. •,.-... v
....... - • - V - ------- ^ » . • - - ^

igpy^p^iy^p^jpfiwi| *• i'. •• •. • ••.'ifi'.L";" • •» • .'i IT»1
.».; :' :;'-;•'•;':,' ^'.,'.,' •; •; •; •; •; •.''•.•"

and numbers are printed. The actual chain code is not printed.

3.3.2.3 DRLMS Programs

DRLMS programs such as fadt and bld__man produce a Feature Analysis Data

Table and a Feature Manuscript, respectively. These programs must use

symbolic data to display it and, also, to store facts about the regions and

how to label them.

"fadt" produces a tabular listing of certain attributes for inclusion in

an FADT. This program is limited to reading attribute values. It does not

modify the Symbolic Data Files in any way. A typical FADT is shown in Table

3-1.

"bld_man" produces a feature manuscript for displaying. It uses symbolic

data to display region outlines, and, also, to record the locations of labels

that the user might, place on the display. Figure 3-3 is a photograph of the

bid-man manuscript editing function, in which the user places labels and key

lines on the manuscript and modifies the feature type if desired. The feature

being edited is outlined in red. Figure 3-4 is the finished manuscript.

3.3.2.4 Attribute Manager

The Attribute Manager is an intelligent interface between the Symbolic

Data Files and the Symbolic Image Processor. It acts as a data base manager,

performing information retrieval, deletion, and updates. A list of the

commands (and a short description of each) follows:

3-21

•'• -'„•'' •'•.-'••.-".•'•.-".- •. .- '• •'".-" -••.'•."••".•.•.•. "•.'-.'-.*•'.'••'•'.'• - •"".'•. .

• •• • «" ' •" "

Table 3-1 Feature Analysis Data Table

Page 1 of 3 Pages

ATTRIBUTES FAC 0 FAC 1 FAC 2 FAC 3

featuretype
smo
height
nostructures
peroenttrees
percentroof
featureid null background

orientation
length 512.000012 512.000012 507.000006

width
level

ATTRIBUTES FAC 4 FAC 5 FAC 6 FAC 7

featuretype
smc
height
nostructures
peroenttrees
percentroof
featureid plane plane
orientation
length 46.837170 36.000001 4.000000 15.000000
width 4.000000
level

ATTRIBUTES FAC 8 FAC 9 FAC 10 FAC 11

featuretype
smc
height
nostructures
peroenttrees
percentroof
featureid plane plane plane
orientation
length 19.000000 50.864949 51.000001 60.044686
width
level

3-22

I*. '~m l". l". •'. *, T*i ...I. I • 1... .- .1 • ».—I-, i. . wv. ..«_,...
• - - - - •

'*'". '- I ' I 111. Jl.l • '.'•'J'> T" • . "V • . • • • | •••!•

Table 3-1 Feature Analysis Data Table

Page 2 of 3 P aaes

ATTRIBUTES FAC 12 FAC 13 FAC 14 FAC 15

featuretype
smc .
height
nostructures
percenttrees
percentroof
featureid plane building
orientation
length 41.000001 179.000003 11.000000 7.000000
width
level

ATTRIBUTES FAC 16 FAC 17 FAC 18 FAC 19

featuretype
smc
height
nostructures
percenttrees
percentroof •
featureid plane
orientation
length 14.532860 15.000000 15.000000 96.0000011
width
level

ATTRIBUTES FAC 20 FAC 21 FAC 22 FAC 23

featuretype
smc
height
nostructures
percenttrees
percentroof
featureid plane
orientation
length 12.000000 12.000000 10.000000 96.000001
width
level

3-23

•. •. r - - * - -
• - - - -• - -• . . • • i_ . . . ^

r

Table 3-1 Feature Analysis Data Table •\

Page 3 of 3 Paqes
1

'

ATTRIBUTES FAC 24 FAC 25 FAC 26 FAC 27 ,

featuretype
"-

smc *
height 1
restructures - *

peroenttrees .-;

percentroof -.
featureid ."

orientation I length 5.000000 11.000000 15.000000 3.000000
width
level

ATTRIBUTES FAC 28 FAC 29
•i

featuretype
I

smc . •

height
restructures !••

percenttrees • 1

percentroof ft
featureid A
orientation .•

length 3.000000 2.000000 \
width •-'

level
1

•

' «

ft
•

' J

3-24
ft

 -•"-•-• '• . ,_„•..•_

^TW*T'!" .»fifliM«i;i;'i.'i» ». •. . • ^. ••.,.....

t! •

J

i

Figur« 3-3
Feature editing being applied to feature manuscript

•-.--".

_ - —.

c.^P^«-

Figure 3-4

Final edited feature manuscript

•-26

-v -v

'•'.'•'•' '••'.-'

- .->• .-•

•

• »•• w r - — - • ••

. • • •• - - •'-.- • * •„• •.• .• •.' •.' •-• •-• •• •/

,--*..'•.•* " . " * ' ' •

,"* - - • '•.*"• .'-„.*."-. * • ' * -

• ' - „

1 •

•..-.•

• . • . - • •
• . . . - . ' .* " *1

'•"••' •"•• -•

NAME: put

SYNTAX: (put <-r region> i! <-e edge> 11 < - g grid > attribute_name value)

FUNCTION: Assign a value to an attribute of a region or edge.
If attribute name is not in the atr key file, it is added.

NAME: get

SYNTAX: (get <-r region> ii <-e edge> i i < -g grid > attribute__name)

FUNCTION: Return the values assigned to an attribute of a region or edge.
If attribute_name is not in the atr_key file, it is added.
If there is no value assigned, but there is a region or edge
measurement extractor for the attribute, it will be run,
otherwise "()" is returned.

NAME: change

SYNTAX: (change <-r region> 11 <-e edge> i1 < -g grid > attribute_name value)

FUNCTION: Change the value of an attribute of a region or edge.
If there are several values for the region or edge, only the
first is changed. If there is no value, change is identical
to put.

NAME: deleteall

SYNTAX: (deleteall <-r region> i i <-e edge> 11 < -g grid > attribute_name)

FUNCTION: Delete all the values of an attribute of a region or edge.

3-26

T"?- V - W i -•,'* V - - 1 ••'- •' *\ «•. ••„ *'.

NAME: deletespec

SYNTAX: (deletespec <-r region> 1! <-e edge> I! < -g grid >
attribute_name value)

FUNCTION: Delete the values of an attribute of a region or edge
which have a specific value.

NAME: xmt

SYNTAX: (xmt method [regions])

FUNCTION: Execute the method for the regions given. This method may be
either a region method in which the class type of the region
would be returned, or a pixel or edge method followed by
segmentation. If no regions are given, region 1 is used for
pixel methods and all regions in the image are used for
region methods.

NAME: merge

SYNTAX: (merge <-r regions> |I <-e edges>)

FUNCTION: Merge the list of regions [edges] given to form a new region
[edge]. When edges are merged, the list of edges must form a
single, non-self intersecting chain or loop.
The old regions or edges remain intact.

NAME: newedge

SYNTAX: (newedge rowl coll row2 col2)

FUNCTION: Create a new edge in the symbolic data file going from
(row1,col1) to (row2,col2).

3-27

• - .•-•-•-•-•••• • _. - • - - .

PPWPPUPPPPP^^WI^^^^*—' • I •-»•••. ,-,..,.,, 1 . " I » • p •

NAME: newregion

SYNTAX: (newregion edges)

FUNCTION: Create a new region in the symbolic data file that contains
vhe area bounded by the edges listed.

NAME: nodes

SYNTAX: (nodes edge)

FUNCTION: Return the nodes of the edge specified.

NAME: deleteregion

SYNTAX: (deleteregion <region #>)

FUNCTION: Delete all references to the named region and its edges.
The mask codes for the deleted region will
be merged with those of the neighboring region.
Deletion will only be successful if the updated region
mask is shorter than or equal to the original mask
representation.

NAME: cells

SYNTAX: (cells rowl coll row2 col2)

FUNCTION: Get the list of grid cells which cover all the pixels
within the rectangle described by the corner points
(row 1, coll) and (row 2, col2). The rectangle
described is clipped if part of it falls outside of
the image.

NAME: included

SYNTAX: (included region)

FUNCTION: Get the list of regions which are siblings of the region and are
wholly contained within it.

3-28

^^P»"--* •. • ••••.'- "" •- *> 'V-

NAME: transfer

SYNTAX: (Transfer region target symbolic directory)

FUNCTION: To copy a region and its bounding edges to a second
symbolic image.

NAME: XYZ

SYNTAX: (XYZ Lrow Lcol Rrow Rcol)

FUNCTION: To return latitude, xongitude, elevation and residual parallax for
a pair of matching points between two images in a stereo pair.

NAME: Background

SYNTAX: (Background symbolic image directory)

FUNCTION: Builds the background region (region 1) in a geographic
symbolic image from the exterior edges of the matched
regions which have been transferred into the image.

Two of the AM commands allow the creation of new regions and edges. The

"newregion" command allows a new region to be defined based upon a set of

edges, and the "newedge" command allows a new edge to be defined from its

endpoints. The question arises: how well does this agree with the definition

of region and edge? It does not, which leads to a redefinition of regions and

edges.

The original definitions of regions and edges were given in section 3.1.

The original definitions are correct only for regions and edges that are

derived as a result of segmentation. Normally, that will be all or nearly all

regions and edges. However, it is possible to define new regions and edges

using the Attribute Manager.

The "newedge" command creates a new edge from the endpoints. Such an

edge has a start node, a stop node, and a chain code representation. It does

not have a rightregion or a leftregion. The original definition of edge

'«•> ^ 'i' V VIIV 'ii.i .i.ii.'i.i. i .i 11 • <•• i 111 i ii ii ii n ••"iiii ii i i.i i ii i. u.;. . . • .' k. •! h Y •> a infc r. •-

'". 'T. T —. -. '^ "". '".' •. '"—r~<

required that every edge separate two regions. However, this constraint

cannot possibly be met when new edges are defined by the AM. Therefore, we

will simply drop the region separation requirement for new edges.

The "newregion" command creates a new region from its edges. Such a

region has a mask representation and a set of edges, but it will not

necessarily consist of pixels of the same class. Therefore, we will drop the

class requirement for new regions.

3.3.3 High-Level Symbolic Data Access

High-level access to symbolic data can be had by using "edit_symb" and

"newsip". "edi^symb" is an interface from the user to the Attribute Manager.

The syntax is identical to that for the AM, so we will not discuss "edit_symb"

further here.

"newsip" provides access to symbolic data through the use of rules.

Rules encode knowledge about image interpretation. There are several types of

rule; one type tests the Symbolic Data Base to see if a particular value or

range of values is present for some attribute. The rules that perform testing

are called Evidence Rules. Another type adds assertions to the Symbolic Data

Base, rules of this type are called Feature Assignment Rules. By using

Evidence and Feature Assignment Rules, testing and updating symbolic data is

made easy, and the implementation details are totally hidden from the rule-

writer. The following are examples of Evidence and Feature Assignment Rules:

(evidence Urban
text "the current region has class urban"
prior 0.1
action ((test (current) with (class = urban)))

)

.

3-30

•--••».»•-•- .•••-•-.. . -. •. - . . - • . .

),' .."I.'..1 • •!».,• ,.'.-.' •!•!•» i.i .ii .••••• • « » » • •...'

|

R

(evidence Offspring_of__Firstregion
text "current Fegion is an offspring of region 1"
prior 0.01
action ((test (s 1 parent) with (firstregion)))

)

(evidence Urban_Neighbor
text "region has 1 urban neighbor"
prior 0.2
action ((test (= 1 neighbor) with (class = urban)))

)

(evidence No__Nonurban_Neighbor
text "region has 0 nonurban neighbors"
prior 0.2
action ((test (= 0 neighbor) with (class <> urban)))

)

(goal Label_House
text "label current region with house tag"
prior 0.01
antecedents (and House_Shape House_Size Residential_Region)
action ((assign label house))

(goal Assign_jSMC6
text~*"water features must be SMC (Surface Material Category) 6"
prior 0.5
antecedents (and Water_Class)
action ((assign srac 6))

)

Each Evidence Rule is composed of the word "evidence," the rule name, a short

description, the prior probability and the action to be performed, in these

cases a test. Each Feature Assignment Rule is composed of the word "goal",

•»•w^^^pyT^^i'^TT^rT '"• '.•''' l'" '.-,'.'• '.'• '.- '.'• '.'-T-T' '••'.'- *? '.' '." 7 ".'•' • *? '.-''••'W" '.-W.-T',"'

i
the rule name, a short description, the prior probability, a set of

antecedents, and the feature assignment action to take. As can be seen, no

knowledge of what is actually in the Symbolic Data Base is actually required,

thus making "newsip" the highest level of symbolic data access.

1

JHJVQHfH^V^M • I • | • '. • I • . • i • » • i • i • ii wm "_i i

4. PIXEL PROCESSING OPERATIONS AND MEASUREMENT EVALUATION

The APR effort has included implementation of a number of pixel

processing and region and pixel measurement extraction commands. In the

subsections which follow we provide descriptions of these commands and

photographs which illustrate typical output from some of the operations. The

APR menu sections containing these commands are:

• Measurement Extractors

• Edit Programs

• Region Measurements

• Edge Measurements

The last subsection discusses structure analysis and measurement

commands.

4.1 MEASUREMENT EXTRACTORS

Measurement extractors implemented within the APR effort include five

edge extraction and filtering operators, plus two commands for spatial

compression and expansion of images.

4.1.1 wiener edge

This command extracts edges using optimal wiener filtering. The program

"wiener_edge" is an interface to the program "efilt," which does the actual

filtering. "wiener_edge" is called with a parameter f, m, or c designating

fine, coarse, or smooth filtering. For each case efilt is executed with

suitable parameters:

4-1

HJPW>—T^IW^i^^T^y^^l^y^i . •,.•,.'.,•. IP. L, !'•.',.'.'.,'••• •• '"' •'. • .•;.•• ••!;.• •.• P i-.-M •• ..i.

parameter coarse fine medium

overlap no no no
a01 -.4815 -.1944 -.3075
a11 -.0102 -.1929 -.2046
b01 -.1222 -.0381 -.0676
b11 -.7556 -.9238 -.8648
A .88 .084 .034
radius 2.0 2.0 2.0
offset 0 0 0
output format s s s

Next edge is called with appropriate parameters.

parameter coarse fine medium

factor .2 .2 .2
thresh 8000 20 5

"Efilt" applies a two dimensional recursive filter consisting of the sum
of four sections each coming from one quadrant of the image.
Each section consists of:

y(ifj)=A*{
-a10«(y(i-1,j)+y(i,j-1))-a11»y(i-1,j-1)
+x(i,j)
+b10«(x(i-1,j)+x(i,j-1))+b11*x(i-1,j-1)

}

which has Z transform

-1 -1 -1 -1

1+b10»(Z1 +Z2)+b11»Z1 Z2
H(Z1,Z2 > aA

-1 -1 -1 -1
1+a10«(Z1 +Z2)+a11»Z1 Z2

efilt first opens the input and output directories and makes sure the input

directory header is in good order. Next it reads in the filter parameters.

It then carries out the filtering operation moving down through the image one

line at a time.

4-2

,,.,,,..,.,.,.,.,.!.,, I »i • .«'i.i.i.«.«'\

i) initialize the first previous output line for
both the left to right and right to left sections
to zero.

ii) read in first line of image
iii) for each line of the image

a) read another input line
b) process left to right section
c) process right to left section
d) sum left to right and right to left and output it

Then it carries out the filtering operation moving up through the image
one line at a time adding result of up pass to down pass.

i) initialize as in down pass
ii) read in bottom line

a) read in input for next line up
b) read in output from down pass for this line
c) process left to right
d) process right to left
e) sum left to right and right to left and add
to sum from down pass.

"Edge" carries out the thresholding portion of the wiener edge operator. For

each 3 by 3 window, this program takes in the filter output and calculates the

following:

dif1=abs(x(0,0)-x(2,2))
dif2=abs(x(1,0)-x(1,2))»1.4
dif3=abs(x(2,0)-x(0,2))
dif4=abs(x(2,1)-x(0,1))*1.4
dif=max(dif1,dif2,dif3,dif4)
sumssum of all elements in 3 by 3 window

If the quantity (dif*dif-factor*sum*sum) is greater than thresh the point is

declared as an edge point.

Operation of the wiener edge operator is shown in Figures 4-2 and 4-3 for

the input image of Figure 4-1. Figure 4-2 has wiener edge pixels for the "f"

filter option shown in green, while Figure 4-3 has edge pixels for the "c"

option in red. Figure 4-4 shows both the "c" and "f" outputs superimposed and

magnified so that individual pixels may be visualized. Those pixels depicted

in yellow are edge pixels detected at both c and f resolutions. The

differences between the c and f options are readily apparent.

4-3

• • .:..-. ,-. .- ,•..-...•»• -.-,\,.-.

^^"^— • • t I I •

:>

1

\

Figure 4-1 Test image

•• •j

. -
.•

•

1
- i

ft «•I

• • . -

m

-•<

-•;

Figure 4-2 wiener.edge with f option

• •

'. . .
•- -

• "

4-4

Figur« 4-3 wiener.edge with c option

Figure 4-4 wlener.edge f (green) and c (red) superimposed

• _M

tr,riB

K~- :"• ,

>.•• .•• -•- ."•

m

'••"••••• •• -1

• '.•". '.
'• <• •m m • • m •'M •w

4-5 > * *

- ••

:>5

•:••:*••;•••
•.•-•.•

-••••.' •-•:•••>••.••

... ü£

_ ^r~

' - •
*:':::v-: "-.-v..
".-•.•.-.•

-.•• •_ -..-» : _V-.' '. -"- •'.

- •--v.
• . ' • • -

-."-'."•

•

:

*

V, •:-:-::>- -!--'••'! •. -
. - . •

•'
•

•

• ".- ." .- ' . *V »

4.1.2 sobel dir

This routine outputs the sobel edge detection magnitude and direction as

a two element vector for each pixel, with both the magnitude and the direction

represented as characters. The sobel magnitude is defined as:

Fs(x.y) = .125 [f(x,y) <»>
12 1!
0 0 0!

-1 -2 -1 I

110-1!
f(xfy) <»> ! 2 0 -2 !

i 1 0 -1 !

where: Fs(x,y) is the Sobel value at (x,y).
f(x,y) is the 3x3 input window centered at (x,y).
<*> denotes "convolution".

Therefore in the 3x3 window

this equation in effect yields:

a b c
d e f
g h i

Fs(x,y) = .125 [ia + 2b +c - g - 2h - i !a + 2d + g - .c - 2f -i!]

Output also includes the Sobel direction which is defined as:

11 0-1!
Fs(x,y) = arctan2 [f(x,y) <«> { 2 0 -2!

i 1 0-1!

112 1!
f(x,y) <«> ! 0 0 0

i-1 -2 -1 i

Since sobel_dir generates a vector for each point, with each point giving rise

to two characters, it cannot be displayed in a meaningful fashion. Figure 4-5

shows the magnitude portion of the sobel operator as white pixels. It should

be compared with Figures 4-2 and 4-3 to see the differences between the wiener

and sobel operators.

4-6

»
... . .-.-..•."-.---•.•-•-. . -•. .•.-•.-•-•-

^yg^^^^r»VJ .'*•.' ff gwgy TT* I*'.*".' -'!* •vl*1*L.* •T •*.*••" ;.':.'* v';.* •'.'•'.' -.• T'ir~'^,rT;n

K-. m

i » • •

•-\"-\--",:-'
•.; v: ••.'. -.

9:*- - 7&

•^

-'«*.»• .• *

Figur« 4-5 «ob«i magnitude

>N

•fc>r-
klW"

-•'".-•»'

* 3«
V- :• •'• •

. -

4-7
•••^ .--.-->

>•*•
•*.-•.

**:•. . ••?..
• . *

• . - . _» ».•.»-•»-••. • _». •

-' ."-..-

JN

-.••.-.•• • >-•:•..•.•;•.•:•,

. ••••«'«'«.*..•. •.»-i

IIII111.IIII.1.1.1 I.I II .1 III

4.1.3 dir filter

ndir_filter" implements a directional filter. Its input is edge

magnitudes and directions at each pixel. The filter will strengthen or weaken

the edge values depending on the degree of corroboration provided by

neighboring edge strengths and directions. The single parameter input by the

user specifies the size of the neighborhood to be used.

Each pixel's edge magnitude is examined to see if it has been identified

as an edge pixel. If so, the surrounding pixels are examined in order to

identify other edge pixels having the same edge orientation (direction). The

magnitude of edge pixels whose direction is consistent with neighboring pixels

is strengthened, and the pixel is assigned an average direction for the local

neighborhood.

"dir_filter" is run on the output data file produced by "sobel_dir". Its

single parameter is the dimension of the square window over which the local

edge directions and magnitudes are to be examined. The window dimension must

be an odd number. The output of "dir_filter" is another magnitude-direction

file with format identical to that of the input file.

4.1.4 mdmf

"mdmf" is a maximal directional edge filter. Its input file is a

thresholded edge point image. It matches the edge points within a local

window to an edge mask which is rotated through 360 degrees, and which

includes orthogonal suppression. An example of the filter is given below.

The input parameters for "mdmf" include the lengths of the edge arm and

suppression arm of the filter and, also, the value of the edge significance

threshold. For example, the mask for edge arm length = 7 and suppression arm

= 7 looks like this:

4-8

ZtJk^JL.V...*.. ..-.. ..:.... -•....-• ".-.-• .'.:. _._..- *'•'•*'-*'-•- - • • •--•-''>*•- >m .__» _« _» - - --"•*. _*:_*.»_» .

0 0 0 0 0 0 0 0 0
0 0 0 0 -1 0 0 0 0
0 0 0 0 -1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 -1 0 0 0 0
0 0 0 0 -1 0 0 0 0
000000000

This filter is rotated through 16 directions. If the value of the filter in

its maximal direction is greater than the significance threshold, the

direction number is written as the output value; if not, a 0 is output. The

result is that isolated edge pixels are removed and edge points which are

collinear with other edge points are retained.

The operation of "mdmfn can be illustrated by running the AFES program

"athres" on the output of the sobel operator of Figure 4-5. The athres output

is in Figure 4-6. The output of mdmf is shown in Figure 4-7, with output

pixels overlaid in green on the red athres output pixels.

4.1.5 edge fill

This program implements an edge filler. It only affects pixels that are

not yet classified as edge, but for which the neighboring edge pixels indicate

the possibility of an edge. The edge strength and direction are computed

based upon weighted sums of neighbor edge strengths and directions.

The window dimension for "edge_fill" must be odd, and its input must

consist of vectors of dimension 2 consisting of edge magnitude and direction,

such as that produced by nsobel_dir". In addition to input and output file

names, "edgefill" accepts a window dimension parameter and a threshold for

testing the strength of the edge likelihood.

4-9

L:'ö.I\: •.•'• • ^ '\ JVL- V'-.- :' •.•-•.•\v..-. .•••••••.,. _-. - . .-.. - . • .• . _• • .- . • ., - - _. ^

1 .•'.' • '•'. • «••••. •——-.-. - • —'. r.1 »*

«•

Figur« 4-6 athres output

•• A

a«

3«

-•

I

aTal 5^ mm *M HT'm •*• •,-.-.]

j

1M b Jl Li

•
•-•

Figur« 4-7 athr«s output (r«d) with mdmf output (green) superimposed
•

1

4-10

• -•<

4
»• • <MI# e • 9 9 -9 • ••#•«•• • «2 1

•

4.1.6 squeeze i

• "squeeze_i" reduces the resolution of an image by averaging pixels

together. Its use in APR is to generate reduced resolution images when it is

desired to do a "gross" classification of an image into classes, such as urban

and rural. Its syntax is

squeeze_i <input image> <output image> <row factor> <col factor>

4.1.7 expand ipr

This program does the opposite of "squeeze_i" in that it accepts row and

column expansion factors and expands an image by an integral amount. Syntax

is

expand_ipr <input image> <output image> <row factor> <col factor>

4.2 EDIT PROGRAMS

The Edit Programs are used to process classification output data. They

are designed to operate on the image which results from a classification

procedure. Classifier output exists for the current working image. The two

commands which are illustrated are "mode_fliter," which removes extraneous

small regions from a classified image, and "edge_thin," which thins edges and

removes isolated edge pixels.

4.2.1 mode filter

Mode filtering involves replacing a pixel's class with the most

frequently occurring class in a window. The arguments depth and width specify

the window size. If the -old option is used, the original classification file

is used. Otherwise, the default is the edited version, if it exists. In

either case, the result is output to the edit directory.

4-11

-.
*' '-' *J "-• ••»••-• •-- -- "J- J ' -- ".- j-'.- •- -• -•• . .- .- '.-. ...••••»••.•-• ..'•.••.'-...-.-•:••-•---•. . .•,.•.. . . ••>—.»,...—• -, i.', > •,

mHUMp^^Wi^^lwm~^m » • • I • I ._.,..• i • i 1 —•—• — • • •

Figure 4-8 is the output from a pixel method which will serve as our

input to mode_filter. The background region is blue; potential objects of

interest are shown in green. The results from mode_filter are in Figure 4-9;

note the small "holes" in the building in the upper right have been removed.

There are a number of other very small regions in the classifier output which

do not appear in the edited version.

4.2.2 edge thin

The "edge_thin" program is similar to "mode_filter," except that it

operates on images classified via edge methods. It reduces the width of edges

to a single pixel by changing the class of certain pixels from "edge" to "non-

edge". edge_thin is called repeatedly until no more pixels can be changed or

until the maximum number of iterations is reached. If no maximum number of

iterations is given, the process will repeat until no more pixels can be

changed. If the -old option is given, the classified output is used;

otherwise, the edit directory file is used. In either case, results are

stored in the edit directory. The maximum number of edges must follow the

-old flag if both are present.

If called without a limiting number of iterations, "edge_thin" is

guaranteed to remove all edges that are not part of a closed region. However,

this is more processing than is usually necessary. Segmentation may benefit

just as well from a partial edge thinning, say 1 to 3 iterations. Limiting

the iterations will not necessarily remove all unnecessary edges, but it will

reduce the thickness of those edges that are left and be more time-efficient.

The great savings in time may make it worthwhile to limit the iterations.

The program examines 3x3 windows and decides if the center pixel should

be changed from edge to non-edge (since this is edge thinning, we are only

interested in cases where the center pixel is an edge). There are two

conditions that must be satisfied in order to delete the center pixel. Let

each pixel in the window have a number as follows:

4-12

riMUfafaMi

Wßm^mi^mmmm ipppipppppi» ' , i. i. 7T • •- v."»".«.".—•« -• •? .-. .- .-.

!

J
-.1

f.

I

i
:•

:

I

Figur« 4-8 Classifier output for pixsl msthod

••- i. -«-

.--•:•

.• -j •

•::-:•••

••• •"-.••-.•

v-v->-' i. •. •.

••-.-•«.•

•

Flours 4-9 modsjiltsr output for Figurs 4-8

4-1S •.'•-.

-

• I •-'.". I I ^•^•»••^—I •—

m

8 1 2 (We are assuming throughout that pixel 0 is an edge.)

7 0 3
6 5 4

» ;1

&Y1

•

The conditions are:

1. By deleting the center pixel we do not create any new regions. So if we

have:

. * . Where the * indicates an edge and . indicates
* * * non-edge. Now if we delete pixel 0 we will
. » . get:

. * . In this case a new region has been created
• • consisting solely of pixel 0. The center pixel

tfj

. * . should not have been deleted.

The condition can be stated as:
At least one of pixels 1, 3, 5, 7 must not be an edge
in order to delete pixel 0.

2. By deleting the center pixel we do not merge any old regions. This can

be restated by saying that the connectivity of the edge pixels does not

change by deleting pixel 0. For example:

. * * Here the connectivity is 1.
. * . All edge pixels are connected. If pixel 0 is
. . . deleted, the connectivity is still 1. Therefore

it can be deleted. However, if we have:

. * * The connectivity here is also 1. But if pixel

. * . 0 is deleted, the connectivity will be 2 (pixels
* . . 1 and 2 will be a connected component and pixel

6 will be a connected component). Therefore the
center pixel cannot be deleted.

There is a special case where the center pixel can be deleted even though the

connectivity of the edges changes. That is when the only edge pixel in the

window is the center one.

The only parameter used by "edge thin" is the maximum number of iterations

4-14

'A-'A 7*9*

31

which will be applied. It is usually instructive to just run one iteration

and then compare the input and output images. Figure 4-10 is the classifier

output from an edge method using the wiener edge operator. The image is shown

in red with the edge pixels overlaid in blue. After one iteration of

edge__thin we get the results shown in Figure 4-11 with, again, the remaining

edge pixels shown in blue on a red background image. The effects of edge

thinning are obvious.

4.3 REGION AND EDGE MEASUREMENTS

The region and edge measurements for a segmented image are computed by

the attribute manager. The easiest way to observe the action of these

measurements is with nedit_symb," which is an interface to the attribute

manager. There are two commands in "edit_symb" which can be used to determine

where an edge and region are and what the computed attributes of that region

and edge are.

The measurements available include

*** Region Measurements **»

area - compute the area
perimeter - compute the perimeter
p2overa - perimeter squared divided by area
length - length of minimum enclosing rectangle
width - width of minimum enclosing rectangle
ave_inten - average intensity of the region
moment_bnd - moment of the boundary of the region
x_centroid - x centroid position of the region
y_centroid - y centroid position of the region
holes - number of holes in a region

*** Edge Measurements ***

length - the actual length of the chain code
distance - the distance between the endpoints
edge__complexity - the complexity of an edge

,(These are all self-explanatory except for "moment_bnd" and "edge_complexityw.

4-15

,,_, Mip-I.'/.V •- •- • ••'^ '
,.. ,. .•; .•» .-> I •_,. -,. -•' • •—}•"

-

Figur« 4-10
Classifier output for edge method using wiener.edge

hi mamm • •

ip4jiiVl ytii*_i_l. i I. I. _l. U-i" J'^J.'

*

"moment_bnd" computes the rotational moment of an object boundary about

the "center of mass" (COM) of that boundary. The simplest way to do this would

be to compute the COM, then go back and compute the moment. However, due to

the following, we can do it with only one pass of the chain data.

I = sum of D*D, where D = distance from boundary point to COM
I s rotational moment.

s sum((x - xc)~2 + (y - yc)A2) '*' denotes exponentiation.
sum denotes summation.

(x,y) = coords of a boundary pnt.
(xc.yc) = coords of COM

= sum(x~2 - 2x » sum(x)/N + (sum(x))~2/N + ... N = no. of bound
points.

= sum(x"2) - 2 • (sum(x))"2/N + (sum(x))*2/N + ...

= sum(xÄ2) - (sum(x))"2 / N + sum(y"2) - (sum(y))*2 / N

"edge_complexity" is based on an AFES program called "vector," which

converts the chain-coded boundaries generated by region_bnd to vector

boundaries. Edg__cmplx converts the chain-code to vectors to smooth it. It

then computes the sum, for all the angles, of:

angle * small / large

where small is the length of the smaller of the two vectors adjacent to the

angle and large is the length of the larger.

Chain code is converted to vector code in one of the two following

fashions:

4-17

•j«"!"^!w^!^""ww»^^^—• ' .* * -.• -:* -*-:* -.*•••• -.* • .*•-.* ^ ^.-.x.vr«~

Method 1 (last good point): The vector begins at the
first coordinate pair (either the first point of the boun-
dary or the last vector's endpoint). Each succeeding chain
code increment defines a new endpoint for the vector. If,
when drawing a straight line from the start point to the end
point, any intervening coordinate pair has a distance from
that line greater than a user definable delta, extension of
that vector terminates, and the endpoint is moved back to
the previous point. The default delta is 1.0. Any delta
less than half the square root of 2 (0.707) will result in
vector code that is identical to chain code. As deltas get
greater than 1.0, the vectors form even rougher approximations
to the original boundary. The attribute manager for APR
uses a delta of 2.0 when it calls "edg_complex".

Method 2 (worst midpoint method): Proceeds as in
method 1, except that the endpoint is deemed to be the point
that was the farthest from the line.

Method 1 generally smooths better, whereas method 2 will follow the

contours more closely. The current implementation of the APR attribute

manager calls "edg_cmplxw with the first option (last good point).

4.4 MEASUREMENT EVALUATION / STRUCTURE ANALYSIS

The measurement evaluation and structure analysis capabilities are

available through top-level programs called "meas_eval" and "structure,"

respectively. Measurement evaluation is used to analyze the quality of the

training data which has been collected prior to region classification.

Structure analysis is used to examine and edit classification results.

The top level of the meas eval program presents a menu:

0 Explanation of Selections

1 Discriminant Measures

2 Probability of Confusion Measure

3 Exit Program

4-18

^ '•'

The discriminant measure refers to the ability to distinguish objects of

two different classes. The higher the value, the better the distinction

between those objects. It is calculated as the ratio of the distance between

the centers of the two distributions (in feature space) squared to the sum of

each object's spread ("variance" from average).

The probability of confusion measure represents the overlapping of

distribution in feature space. The value of confusion is smaller for less

overlap. Thus, a value of zero confusion between two classes indicates that

there exists very little overlap between their distributions.

Each measure has a menu that describes its output options. Figure 4-12

shows an example of terminal output for the discriminant measure in which

three measurements are ranked for a simple target vs. background

discrimination.

The structure command allows the user to examine and edit training region

data for the current object method for the purposes of improving

classification results. Output plots for structure are sent to the Tektronix

display. Note that the "restructure" option cannot be used for pixel methods,

only for region methods. Figures 4-13 through 4-16 are typical structure

output. Figure 4-13 is a scatter plot containing samples of class "light"

(labeled "A") in the upper right corner and class "background" (labeled "B,"

but heavily overlapping) very near the origin. Figure 4-14 is a cluster plot

in which local clusters of samples are identified by a single letter. A group

of "A" clusters occurs in the upper right corner and the "B" cluster appears

near the origin. Figure 4-15 is a combined histogram of A and B samples for

one measurement, avg 3. Note the single "B" peak near zero on the horizontal

intensity bin scale and the "A" peak near 255 on the vertical count-per-bin

scale. Finally, Figure 4-16 presents separate histograms of avg 3 for the two

classes, A and B. B (background) has a peak near zero on the horizontal

intensity bin scale and A (light) has a peak near 255 on a horizontal count-

per-bin scale. The separation is readily apparent.

4-19

*w^*f-T*ri

Measurement Evaluation Categories

0 - Explanation of Categories
1 - Discriminant Measures
2 - Probability of Confusion
3 - Done

Category r 1

Output Menu For "Discriminant Measures"

0 - Explanation of Categories
1 - Rank Measurements for a specified Class i

2 - Rank Measurements for a specified Class Pair
3 - Rank Classes for a specified Measurement
4 - Rank Class Pairs for a specified Measurement
5 - Union of Best Measurements for each Class
6 - Union of Best Measurements for every pairwise set of

Classes
7 - Rank Measurements Distinguishing all Classes
8 - Select New Measurement Category

Category = 7

Rank measurements distinguishing all classes

M(Xp) Measurement

94827,375000 maxint 3 3
10707,809570 avg 3
7350,170898 minint 3 3

Figure 4-12 Discriminant Measure Output

>

H

4-20

!

Ill«I • i »j v (• |, ••<«•. •>". i- w\ l- rr<jr -T -.-.-^."B-.-

bJ-s

i

$

i

.

.•

w
u
0-

H
CO
C/i
<
-J
o

vO —~•
vO
CM -O

c
3

w O
u

eo o
r-t .O

I I

< ffi

—r
<
<

<
en

•o
o m
£ *> «i
<v m c I •H

0£ X
II > (D

(0 s
a o II II
X m
H *— CM eo
Ci] ON z 33^

111 tal CM z z o
• •

CVJ • •
o

H ^"
O
J u m
a.

< c a <_> ra
u tn "9
as
u j
H <s ..
H CD U < o P
CJ J <
CO o a

T—r

QQ

-a
S-

o o
z o o
=> o o
z o o
M • •
X in m < in m z CO e\j

en
eo
>
(0

=3
z

o o
o o
o o
o o
vo o
«» <\J

m
m
«1

i-i
00 X
> co
ca B

CD

o

ai

I

S-
3

T 1 r 4

4-21

I;-:

^ *-- o *-" ^" <-'*-' +J\ •-' *_~ -i^".«-'. t-* ^' -^
- • .T •> -^ , - - *..

 . m

^i^^i^^ --•."-'.1 .-».'•'-• " -"-1

1

I

1

,-1

vO -—-
vO
CM "O

C
3

CO w O
u s.
Qu jj> ao
>-" £ ^
H do o

iH (0
CO .H .fl
CO
< II II
-1
u < 03

m

TJ
O JJ
£ m c
-u •H
0) QC X
1 > <o ro

(0 E co
n o\

II II «-
a
o CO co sr
2: (2 $7
Ul z Z CM
Z • •

0
1—

H u CO
0 •3
-3 < c
a. 0 co

CO "S
OS
UJ -j
H <c ..
CO 0Q U
3 O H
_J J «S
u u 0

T—r

<
— <

-Sfl
>
co

0 0
z 0 0
=> 0 0 +->
z 0 0 O
l-l • • ^•

X in in O.
< in in
z CM CM s_

<X)
-M
(/I
3

U

1—t
1

^>

tu
s.

z 0 O 3
=3 0 O CT
z 0 O •r—
M 0 O U_
z . •
IH vO O
z «- CM

• *
on

m

«a
m c
co X
> 0B
co E

w

T 1—r~

I,

4-22

»

ft

.i-.-. • -»- - • - •-"*-»-• __^

 I " •"•^••,-
'.'t »•».•!•••• ' . • I • •"• I • • .' ' • , . • . ' - - • ' - •••.".'- ' " - " - •

MICRO PLOT MEAS i
GLOBAL SCALE DATE:
VECTOR COUNTS.

METHOD = method 1

= avg 3
Jan 3 10:26:44 1983

MIN = 16.000
MAX = 255.000

CLASS TYPES

A - light
B - background

o
CM

A

m

CM

CM

CO
r-l

•

CM
B

ITS m

O
H

H
CO

-3-

c—
CM

A

BIN SIZ
BINS

14.938
16

Figure 4-15 Composite Histogram

4-23

-' • '—• -1. • - • -*• -'• -*•-" - • - - i *-•
.•••.. . .- ^- - ~ _ *--* *. «-.-

w ^p

METHOD = method1

MACRO PLOT
GLOBAL SCALE
PROBABILITIES

MEAS = avg 3
DATE: Jan 3 10:28:19 1983

—background

•light

MIN = 16.000
MAX = 255.000

BIN SIZ = 14.935
BIN =16

Figure 4-16 Class Histograms

4-24

.' . .'••.•.-. --.-. ------------ ^_^_. . . - i- ^- - •> .i« • » i in i i -I.

ppfl?^^^^^p»^^^^^^^^^^^^^^^"^^^ • ' '.'.»:-;»•.- i » .'- j-

APPENDIX A

User Guide to Knowledge Engineering With NEWSIP

;.i-,,.-,.- '»• ,j .- . i - -• "-• - -

^m^mmmm .i i • m IJI)• Li i »• i •• L».,"..

A.1 INTRODUCTION

The NEWSIP rule-based system was designed to allow the use of

probabilistic inferential reasoning for image understanding in the AFES/RWPF

environment. Like most expert system frameworks, NEWSIP consists of two main

components, an inference engine and a rule base. The inference engine

consists of the software for a general mechanism to draw and explain

inferences. The rule base is a text file consisting of a set of conditions

and actions which provide the knowledge for particular inferences to be made

to solve a problem. In the field of Artificial Intelligence, the task of

building a rule base is known as knowledge engineering.

This document provides an introduction to knowledge engineering with

NEWSIP. Information is provided for an understanding of how to build a rule

base that provides specific problem-solving knowledge for NEWSIP. In

particular, the general methodology of rule base construction is described

(with examples given) and a detailed definition of rule base syntax is

provided.

A.2 BASIC CONCEPTS

Before providing an example of how specific rules can be developed for

NEWSIP, it is necessary to describe the basic concepts that the system employs

for representing and using a rule base.

A rule base consists of a set of conditions and actions which tell what

inferences can be made for solving a problem. A single rule consists of an

If-Then statement relating a set of antecedent conditions to a consequent

hypothesis. The certainty or truth of the consequent depends upon that of the

antecedent conditions. The antecedent conditions may themselves be the

consequent parts of other rules. For example, the statements,

A-1

-' • - •

w
*D-A132 239

UNCLASSIFIED

ADVANCED PATTERN RECOGNITION(U) PAR TECHNOLOGV CORP NEW 2/2
HARTFORD NV J L CAMBIER ET AL. MAV 83 PRR-83-1
RADC-TR-83-50 F30682-80-C-0319

F/G 28/6 NL

^rr-r^rrr^-.:'---:;-J? :•>•;•* ^.>:>.:^>.'.»^ v...'.,-'.v:,-v>-; r:i:s^...v.- <7wyj^-.i'.- J: r • *> - i• .

I
*

1.0 t

I.I
lit
its
El

IM
1Ü

L. 12.0

1.8

L25 IIIU lh.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

-;. ;.;.;, Y . .. •y-\.•-;. . •;. •;. ^•.v•v.v//A^v••.^/•v•".••'.^'.v^•.^•.^.^•.^;vv.v.•;^•;^^.•^\••-,•••

«rrr ' •.-. w r-r- -. •.-.'-. „^ 'j. • ."."-.•••*

If E1 and E2, then H1, and

If H1 or E3, then G1

represent two abstract rules. E1 and E2 are antecedent conditions for H1, and

H1 and E3 are antecedent conditions for G1.

NEWSIP uses an inference network (inference net) representation for its

rule base; If the two rules of the example above made up an entire rule base,

they could be thought of as an inference net that can be drawn as:.

! H1
! and ,

! E3

G1 i

The nodes in the network represent the individual antecedent conditions and

consequents. E1, E2, and E3 are considered evidence nodes; H1 is an

intermediate hypothesis node; and G1 is a goal node.

The labels of evidence, hypothesis, and goal are assigned by the user

when building a rule base, but are usually reflected in the structure of the

inference net. Evidence nodes are the leaves of the network, having no

incoming arrows representing inferences, and are associated with some test or

measurement to be performed on an image. Goal nodes are the roots or sinks of

the network, having no outgoing inferences, and are associated with some

action to be taken such as identifying a feature or segmenting a region.

Hypothesis nodes have both incoming and outgoing inferences. (As will be

A-2

• •«,• i • - .•-'••' -•_'.-•...•- _'•. - *-

. • ."• -- •

*!

described later, however, a node like H1 may also be considered as a goal).

The arrows between nodes of the inference net represent the antecedent

consequent relationships. The labels of "and" and "or" applied to H1 and G1

show the kind of relationship between a node and its antecedents. In the

probabilistic inference mechanism that NEWSIP uses, the arrows, or links

between the nodes of the inference net also represent paths along which

probabilities are propagated, and each node has a probability associated with

it.

The control mechanism of the NEWSIP inference engine as ap ied to the

above example can briefly be described as follows. Assuming that the rule

base has been coded in the proper format, which will be described later,

invoking the NEWSIP inference engine will cause the rule base to be read in

and parsed for syntactic correctness and will also cause an inference net

representation to be formed internally. Next, a goal node will be selected

for consideration. (For this reason NEWSIP is considered goal-directed.) In

the example, only one goal node, G1, is available. Having selected G1, the

control mechanism now trys to determine its certainty. To do this it looks

for evidence nodes that affect G1. This process is recursive and depth-first.

The immediate antecedents of G1 will be considered one at a time. If the

first one considered is not an evidence node, then its antecedent nodes will

be examined. So, in the example, H1 might be selected as an antecedent for G1

and, then, E1 could be selected as evidence for H1. At this point, whatever

test or measurement is associated with E1 is performed and the certainty of E1

is determined, turning out to be true or false: that is, probability 1 or 0.

This certainty is now propagated through the inference net. Probabilities are

updated for all of the nodes affected directly or indirectly by E1. In this

example H1 and G1 will be affected.

Now the control mechanism iterates. G1 still needs further consideration

since other evidence remains to be investigated for it. H1 has also not been

completely investigated, so it would be considered again. E1 has been tested,

so the test for E2 would now be invoked. The resulting probability would be

A-3

'»-'• •>-'• •-' '-' *•* *-* •>•* '-'i" '-* *-* *-'• •^'----', •-' *-" i".--' <- •-••'•-• i--«-' .-- —.. -- .-.-.,'•.:. -,. :..•.-»•«. '.« -a ,.s -«

rw.ws i i i|iin-i • » ,» r w • •.•!•.•• •, ».-_». •••-.•>.' .-r-;- -7.- — - - .-. .- •-.

propagated and the process continued with another iteration (which would this

time investigate E3). After E3 has been considered, no further evidence

remains to be investigated for G1, and NEWSIP would halt, after having

performed whatever action is associated with G1 (or not performed it),

depending upon G1's probability.

The specific actions and tests that can be specified in an NEWSIP rule

base are described later in this document. Only two kinds of actions are

currently possible: to apply a segmentation method to the current region or

to assign an AFES/RWPF region attribute value to the current region. The rules

of an NEWSIP rule base are applied to one region at a time; the one being

considered at the moment is the current region. Evidence tests are limited to

the evaluation of conditions on sets of regions or some special predicate

functions. Conditions are expressed as arithmetic relationships on region

attribute values, and sets of regions are specified in terms of a quantity of

of neighboring, offspring, parent, or included relationships to the current

region being examined.

Other details of the NEWSIP control mechanism such as the user-command

interface will be described in other documentation. Subsequent sections of

this tutorial will describe how goal actions and evidence tests may be

specified, how probabilities are assigned, and how goals and antecedents for

investigation are selected. The next section presents an example of how rules

are developed.

A.3 Example of Rule Base Development

The example of rule base development presented in this section addresses

the problem of finding in an image large and small regions which have a class

of water, urban, or vegetation as determined by a segmentation method called

wuv_finder. This example is fairly artificial but serves to illustrate an

overview of the process of knowledge engineering with NEWSIP.

A-4

-.>%>•-! •" •_-*•_ -'. •: •. •:-!-:•".•:•!-i-M-I •«^•M* •!•:•!•;•! •_•!•_-v:l '^^l^li^^L^i^:.^ '^^L^lu^ui^i^^^L:^* l> -... **VV.~fc

'•»•:*: ••. A •••• 'A-iT^. •'.' •". -". •'. •', •'."••.' ••. ••. •: r^\/T^vr^.,.,:^'.'-,->.v?;r'"v.:',:';:;-y7'>,-Ä-/V"/,.r7 v- v -.- -.- -.» -•-•--•.• •

The first step is to define the problem or what it is we want the rules

to determine. In this example we want to apply the wuv_finder segmentation

method to the initial region if it is very large and, then, decide if it or

any of the resulting offspring regions are large or small.

Having defined the problem, we can begin building a rule base to solve

it. The general approach is to 1) determine what actions are to be executed by

the rule base (actions which will correspond to the goal nodes in the

inference net) and then 2) define the conditions' that determine when to

perform these actions. There are three actions that our rules will perform:

segment a region using wuv__finder,

assign the label of 'large' to a region, and

assign the label of 'small' to a region.

The considerations for deciding among these actions may be represented in the

following conditional statements:

If the region being examined is the first region,

and has a large area,

and has a large perimeter,

then use wuv finder to segment it.

If the region being examined has either a large area

or a large perimeter,

then label it as large.

If the region being examined has a small size

A-5

A

I » I p^-p^-^-i iii • i ii |.II i . .1. i. •.•».-. i. »• i ^ i « |i • i !•• i' .• - •• .'**.'—," •.» ." « .• .» •_» "i - i "t •'. »v-»-r

01

1

and is not considered large,

then label it as small.

Of course, there are many other conditions that could have been used and,

also, many ways they could be combined in such statements. Building some

small alternative rule bases for this problem is recommended as a useful first

exercise at knowledge engineering with NEWSIP.

A useful next step is to specify the above statements in a slightly more

formal fashion, naming the antecedent conditions and consequents, indicating

what tests will be required, the names of the labels to be used, and the logic

of the antecedent-consequent relationships. The more formal specification is:

If first_region

the region being examined is the first region

test for R1

And

large_area

the region being examined has a large area

•^ test for area >= 100,000

And

large_perim

the region being examined has a large perimeter

test for perimeter >= 400

Then wuv_finder

uses wuv_finder to segment the region

segment using wuv_finder

If large_area

Or

large_perim

Then large_region

the region is fairly large

A-6

>. <

--.

«'''»'• -•-•-'•."• -'•- . • • -'• -'» .'•-'• -'. .•«-'•-.-'>• -^» -'. - . - . ~"n m'n i> jr'ff -n> -.'ff , T, -in 'l ! n n '-h i - - '

'j.V.'l.'.- .lll-fl il.il. I», I. II. I.».".." .v.- '" ".• •> •«• j r * .".i

! small size

! large—area
! evidence

i large__perim

large__region
goal

i not_large
hypothesis
not

i small_region
goal
and

i wuv_finder
goal
and

Figure A-1. Example of NEWSIP Inference Net Representation

We can also take (before using and debugging the rules) the final

representation step, which is to code the inference net in the NEWSIP

representation language. The syntax for this language is described in Section

A.6, and the result for our sample rules is shown in Appendix B. Once coded,

the rules can be used with the NEWSIP software for debugging the rule base.

The above example gives an overview of the process of knowledge engineering

with NEWSIP. The next section provides a general methodology for this
process.

A-8

• ' W, fc" V, .U" ft-i V. L. -±' "•* '•! Cfn>.^' Vt*^fc~.y»•»'••* V V\ V\,V iV«^Jk .^Mm'm m * »> • 'jLi'l »^ **1 » t m> » y».».!«'..*1!».?.!! f.,,.

.*'«•'."• J . m - * -"» *'» *"• 'i'l'^y •:• y y J *» " " ' ' • . • r» u^ • * . • -." *».* i,* -,* v/ ^ r? v»";v,"' TT~v777T7 "." O *." -." • " •S-» T— rn- 5— «-.•

A.4 KNOWLEDGE ENGINEERING METHODOLOGY

It is convenient to think of knowledge engineering with the NEWSIP system

as the process of building an inference net. The goal of this process is to

produce a text file containing a description of the rules for solving a

problem written in the NEWSIP rule representation language. General steps in

this process are:

1. Identify the problem, what needs to be done, what is the expected outcome

in terms of existing AFES/RWPF data structures, etc.

2. Determine the problem structure, what goal actions are to be taken, what

kinds of evidence tests will be required, and what some of the

intermediate hypotheses are, if any.

3. Determine the kinds of relationships between antecedents and consequents

of the rules, whether rules should involve "and," "or,n or "not" logic,

or whether they should use Bayesian inference and assign rough values for

Bayesian weights and prior probabilities.

1. Code the rules in the NEWSIP inference net representation language.

5. Debug the rule base, modifying or extending the inference net, and

adjusting Bayesian weights and prior probabilities.

Clearly, the process described in these steps is incremental and iterative,

;-".* especially in steps 2 through 5. Chunks of knowledge, in the form of single

£ or small sets of rules, can be added to an inference net and debugged,
rj". gradually building up the inference net to handle all aspects of the problem

\:4

as defined in step 1.

•-4 i -

\\ A-9

M -.-
f.* • *
LN

,»«.,.. *.-,-.-,-„•,•.•. • --"•-•-.»•.•.. *.-,...-.

• _» .> • J" -* -r -• J J» -• -• • • -•* -• -" -• -• -•
.. .| i I • • • » • I •—• - J • I - i_ •

One difficult part of the rule building process is to determine the kind

of mechanism for representing inferences; i.e. whether particular rules should

have their antecedents in an "and", "or", "not" or Bayesian relationship. In

general, an "and" relationship is used when all of the antecedents are

required to determine the truth of the consequent, an "or" relationship is

used when only one antecedent is required, a "not" relationship when the truth

of the consequent depends on the antecedent being false, and a Bayesian

relationship when independent antecedents affect the consequent in different

ways. The next section defines the mathematics behind these different types

of inference mechanism.

A.5 PROBABILITY ASSIGNMENTS

NEWSIP uses a probabilistic inference mechanism based on the ideas used

in PROSPECTOR [Duda, Hart, et al] and AL/X [Michie]. The nodes in the

inference net may be thought of as representing events in some probability

space.

Some events are associated with observable evidence that determines their

probability; in the case of NEWSIP, these events are represented by evidence

nodes, and the observable evidence is the test action associated with the

node. Each node has a prior probability associated with it which represents

the probability that the event associated with the node will occur given that

no observable evidence has been collected. As evidence is collected, the

probabilities of the nodes are updated according to several rules of

inference. These rules tell how the probability of a node can be determined

from that of its antecedents. Lit i, 1 • 1 , , ,g, bl antecedent nodes for

node B. Then the rules of inference for "and," "or," or "not" nodes are:

If B is an "and" node:

Prob(B) = min [ProbU^] , i = 1 . . n

If B is an "or" node:

A-10

'.Vv'.vjj'•/• Av'.'.v.-lvV.v' .-—-*•.• .-'•--•.-"'•«:.-'•-•'••«•-•'•--'-• - -..- •-: -—.- .»•'. '.- '-• .J -•, - • —;•-•-•

iv.1..1-A - l " • • •••!•'. ". - . • . "'. " 1 • . I

Prob(B) = max [Prob(A)] , i = 1 .

If B is a "not" node (B can have only one antecedent):

Prob(B) 1 - Prob(A)

For Bayesian nodes, the probability of B is updated independently as the

probability of each antecedent node changes. The updated Prob(B) is

determined by multiplying it by a Bayesian factor, which is calculated by a

piece-wise linear interpolation between the Necessity and Sufficiency factors

provided for an antecedent. The interpolation function looks like:

Bayesian *
multiplier I

I
I

Sufficiency.
factor

1.0

Necessity
factor

0.0 Prior
Prob(A)

 . ProMA.)
1.0

The interpolation formulas are

For ProbU^ < Prior ProbU^:

{Prob(Ai) » [d.o - Necessity) / (Prior ProbU^)]}

+ Necessity

For Prob (A^ > pri0r Prob(Ai):

A-11

•/'-• .*1-A v'--. .'.•>'.'•'.'•'/•• ,,J'.'.'.•-*-•• .'-" — . » .-:. :'j-i'.=.-"t.' . .

jB^MWMq^pqp^WjW^TW^P^^imii. I.I Hll»M,t "' •'• • '-".T. T 1 *••'•' • -V *T H V.V >•. > . u-;"«1 :«•,_« ._»;.'«•••.* ..' • '

{[Prob(Ai) _ Prior Prob(Ai)] »

+ 1.0

[(Sufficiency - 1.0)/(1.0 - Prior Prob(A.))]}

If ProbCA^ iS o.O, Prob(B) will be multiplied by the Necessity factor

for Ai# if Prob(At) is 1.0, Prob(B) will be multiplied by the Sufficiency

factor for k^, A low Necessity factor means that, if ^ is false (Prob(At) =

0), B is also false (Prob(B) is greatly reduced). A high Sufficiency factor

means that if ^ is true (ProbCA^ = 1.0), B is also true (Prob(B) is greatly

increased). (Hence, the names of the Necessity and Sufficiency factors

suggest the corresponding concept of necessary and sufficient conditions in

logic). If Prob(A) does not change from its prior value, Prob(B) will not

change (since the Bayesian factor will be 1.0).

A.6 RULE REPRESENTATION LANGUAGE SYNTAX AND SEMANTICS

The complete syntax for the NEWSIP inference engine is described in

Appendix B in BNF form. The final representation of the rules of the example

that was presented in Section A.3 also serves as a model for a syntactically

and semantically correct rule base. Basically, an NEWSIP rule base file

contains comments and node definitions for the inference net that represents

the rules.

Comments take the form of Franz Lisp comments and consist of text

enclosed in parentheses with the first word of "comment11. For obscure

reasons, comment text can contain any characters except commas (,) and single

quotes (').

Node definitions are also contained in parentheses and consist of several

parts. Required parts for all nodes are the node type, node name, text

describing the node, and prior probability for the node. Node type must be

goal, hypothesis, or evidence. A node name is any user-defined name for the

node, but it must start with an alphabetic character. The text part of a node

A-12

-' •-' 1* *-'• V-V***-' <.-'«-*'^".'- • •- ••'. •*.. -'m.'-.\'~L.'. ..•'.'.•'••'••••.••••••••. -- 1 ..--.-•- ^- .».••

.^- . » . »r- r* •:• ».* «V '.'". '-'*• ."-' *- :.*- ."^ '.^"T »" »" '_'• ''••",'- 't •> *j

definition consists of the word text followed by any user-defined text

describing, enclosed in double quote characters ("), what the node represents.

The prior probability is the prior probability that the event or statement

represented by the node will occur or is the case. It should be consistent

with the rules defined in the previous section, the priors of antecedent and

consequent nodes that it is linked tt>. It is defined by the word "prior,"

followed by a number between 0 and 1.

Optional parts of a node definition are the specifications of

antecedents, consequents, and actions. The antecedent specification for a

node consists of the word "antecedents" followed by a list which has a format

depending upon the logical relationship of the antecedents to the node being

defined. For "and" or "or" nodes, the antecedents list consists of the word

"and" or "or" followed by a list of names of the nodes that represent the

antecedents. For "not" nodes, the antecedents list is just the word "not"

followed by the name of a single node. For Bayesian nodes, the antecedent

list contains one or more Bayesian link definitions which are triplets

enclosed in parentheses consisting of the antecedent node name and the

Necessity and Sufficiency factors for the Bayesian link. A node can have only

one antecedents list associated with it and, hence, can only be of one logical

type.

The consequents specification for a node consists of the word

"consequents" followed by a list of the names of the nodes that represent

consequents of the node being defined. The type of relationship that the node

has with the consequent must be specified in the antecedents part of the

consequent node definition; that is, the consequent part of a node definition

exists merely to allow the knowledge engineer to introduce clarity and

redundancy into the inference net definition.

The action part of a node definition is required for goal and evidence

nodes, but not for hypothesis nodes. It consists of the word "action"

followed by parentheses enclosing the action specification. For evidence

A-13

V .*. .'- .'- .*- .'..•_.•_.•-•'-•-• -'-••.-•• I.' . .'.--• _' •_'-_ -' -' -' . . - - '- '- » '• •--'.-- '.-.-.-.-.-.-. •« .1"-'- *-•»!

i,.,.tm,i,|ii;i,l,F,l'l . .•• .' f • •.» -- •• .- V-7" ••» • .- .- .- - -• V .". .-. --""• --.'-".

nodes, the action part should specify some tests to perfonn to determine the

probability of the node, which, at the moment, can only turn out to be either

0 or 1. More than one test may be specified, and the probability of the

evidence node will be set to 1 only if all tests are true. Each test

specification consists of the word "test" followed by a single condition to be

tested. Test conditions take the form of (<region spec>) with <region

quals>. <Region Spec> may be either current, meaning the current region being

examined, or some specification of a relationship to some count of neighbors,

parent, offspring, or included regions for the current region. <Region quals>

may be a single qualification or a list of single qualifications separated by

the words "and" or "or". For an "and" list, the test returns true only if

each qualification is true for an "or" list, the test returns true if one of

the qualifications is true. A single qualification may be a SIP predicate or

an expression of a SIP predicate or AFES/RWPF region attribute in a

relationship to one of its values. A list of current SIP predicates is

provided in Appendix B. Previously-defined, valid, AFES/RWPF attribute names

are listed in the available on-line documentation.

Some examples of evidence action specification will clarify the above

discussion. The syntactically correct test specifications below are preceded

by text describing what is being tested.

test whether the current region has a perimeter greater than

1000 meters

(test (current) with (perimeter > 1000))

test whether 2 or more neighbors of the current region

have perimeters greater than 1000 meters

(test (> = 2 neighbor) with (perimeter > 1000))

test whether any offspring of the current region have

areas less than 100 square meters

(test (> 0 offspring) with (area < 100))

A-1U

• -••• • • - - • - - -» ^ . • •— . I 1 -- • - < - • •/ , • .. .' • • » . I t . .

T^' :n*. '!•'••, v—^ •• \y.»•• *.». • •• ">i *.» •.* •,• •* '•*. A **.'?'«* •.'».-»." •••.*. '.*.'.' .'

•1

test whether no included region has area < 100 and

perimeter < 40

(test (< = 0 included) with (area < 100)

and (perimeter < 40))

same test as above expressed as two separate tests

(test (< s 0 included) with (area < 100))

(test (< = 0 include) with (perimeter < 40)

The action part for goal nodes may specify either a segmentation method to use

on the current region or a set of attribute value assignments for the current

region. Segmentation goals contain an action specification consisting of the

phrase "segment using" followed by the name of a segmentation method.

Segmentation methods are user-defined.

Attribute assignment goals have an action specification consisting of a

series of one or more assign statements. Each statement has the format of the

word "assign" followed by the name of an AFES/RWPF attribute followed, in

turn, by the value to be given the attribute. AFES/RWPF attribute names may be

user-defined, (for example, the "label" attribute defined in the example in

Section A.3).

A. 7 CONCLUSION

The above document provides some insight into how to do knowledge

engineering with NEWSIP. The important aspects of this process are 1) that it

is incremental, with small chunks of knowledge being added to the system over

time, an<* 2) that it is iterative, with rules being gone over many times to

achieve the exact desired results. Working with any formalism requires time

for learning its details. Much trial and error will be required, along with an

understanding of this document, in order to make satisfactory use of NEWSIP.

A-15

i «Jl *-' %-* -w* *_" »-* •_' .J" *_.*.*/!.....V...V.. **..%»..*..•..>,.. V..- ».. -..- *..• -..* -A.fc.*,....*„.,.*.-....... ... * i

•wT^TTT •".' -'. -". •%>". -V i". •"- •". i'v'L-sr:.";:-; i1"..'".'.':;'1"..""^ •":.'• :.* .;»•:.•—• ^\'\my.\-'.*.\<mK'F',wr^-^\^^-.^i--y^ .-•-.-• y'ymj.^..r-.\. -.-_.-.. -,-_-

A.8 REFERENCES

The following are the main references utilized in developing this

appendix:

Duda, R.O. Hart, P.E., and Gaschnig, J., •
"Model Design in the PROSPECTOR Consultant System for Mineral Exploration,"
Expert Systems in the Micro-Electronic Age
(ed. D. Michie) Edinburgh: Edinburgh University Press, 1977 pp. 153-167

Michie, D., and Paterson, A., |
AL/X User Manual,
Oxford: Intelligent Terminals Ltd., 1981

1

•

A-16

'" -"* '••"'•«*-'*-•'•*-•*-* '-• -•- -• •• .••- .•.-••-•..'-•--.•-•-••-•-.••.. ..• ^- - •_• •_ .••..•..•..•.-.•»_'._._._...-..,

. i» ..» ••• H| • T ••; my mm, »j. w\' ' \ « V . • . ' V* '. l . l . * "^ V"- .' • ' - 7—T^

APPENDIX B

NEWSIP Rules Syntax, SIP Predicates, and
Sample Rule Base

'.-..-..-. •..•.iiv.-:».- •.•'•.•i-.-ivivi-w-'-.v.:.:.•!-.•;v ^^.•'--•'0-:^-;^-'-l• I-M ^-v-"^^.

*^^**^***^^. • . • - '. - "J1 '.'1*. *'•I". -*. '•*• -", -*• •". V*. •'. - !•• .• •• *• •- .- T-1 . , .-• •• -•• •'

B.1 NEWSIP RULES SYNTAX

Below is a complete BNF description of the syntax for defining a rule

base to be used by the NEWSIP inference engine. Instead of completely

specifying some of the terminal symbols, generic descriptions have been used

to define these symbols.

Any symbols, except i, :: = , <, and >, may represent something that must

be included in the syntax, e.g. (or). Spaces count except those following

the symbols (or " or those inserted before a) or ".

Rule Base Definition:

<node set> ::s <node def> <node set> !

<comment> <node set> !

<node def>

<comment>. ::s (comment <comment text>)

<comment text> ::= any string of characters allowed

within Franz LISP comments

Inference Net Node Definition:

1
V

V
!>
1 .

<node def> ::= (<node type> <node name> <node desc>) * I

1
i i

<node type> ::= goal j hypothesis | evidence
i

• * <node name> ::s <name>

•-4

4 V
1

y

B-1

a

i 1

•.' •.'
• •.•'.•.^.•"V"*.-":J-1.'-J '•'• • • • ."•.-."•-

"--".' " .- ,

^\ • . - .*• •MWl1..1..1,^!.1-.-1 , »,.........._,...,..., rr

<node desc>

<consequents>

<text>

<antecedents>

<action>

<prior>

<text> ::= text " <char string> "

<char string> ::r any string of characters except the

• character

<prior> ::= prior <probability>

<probability> ::= a <number> between 0 and 1

<number> ::= a real number

Antecedents Definition:

<antecedents> ::= antecedents (<antecs list>) !

<>

<antecs list> and <node list> !

or <node list> !

not <node narae> !

<Bayesian list>

<node list> ::= <nodename> <node list> i

<nodename>

<Bayesian list> ::= <Bayesian link> <Bayesian list>

<Bayesian link>

<Bayesian link> ::r (<node name> <Sufficiency> <Necessity>)

B-2

<--^'^'-> -• -• * - -• • -•'-•• -- -•-• ••••.. * • •> -• -> -• -

--;•-;--.--.•. -.--;—* I •!—*-* '

<Sufficiency> ::= <number>

<Necessity> ::= <number>

Consequent Definition:

<oonsequents> = consequents (<node list>)

<>

Action Definition:

<action> ::= action (<action spec>) !

<>

<action spec> := segment using <seg method> !

<assign series> |

<test series>

<assign series> ::= (assign <assign spec>) <assign series> |

(assign <assign spec>)

<assign spec> ::s <attribute> <attr value>

<attribute> ::= AFES/RWPF region or edge attribute name

<attr value> ::= <number> !

<symb attr val>

<symb attr val> ::= AFES/RWPF region or edge attribute symbolic value

<test series> ::= (test <test spec>) <test series> 1

B-3

*-• • • • *- *- . : • • • - - • -» ._ •-•-•- - .-•.••-•. • - ' •- •- '- - '- . ._'.-'.- t - r - •_ -»-^ i_

s

,'i
„V
'J

(test <test spec>)

<test spec> ::s (<region spec>) with <region quals>

<region spec>

<rel> <region quant> <region rel>

<region quant> :: = an integer >= 0

<region rel> ::s neighbor !

parent i

offspring !

included

<region quals> ::s <and reg quals> !

<or reg quals> i

(<region qual>)

<and reg quals> ::= (<region qual>) and <and reg quals> !

(<region qual>)

<or reg quals> ::= (<region qual>) or <or reg quals> |

(<region qual>)

<region qual> ::= <attribute> <rel> <attr value> i

<predicate> i

<predicate> <rel> <pred value>

<predicate> ::= SIP predicates yet to be defined
^

<pred value> ::= <number> i

<symb pred val>
l

B-J»

vv:;:

•

'••"-• %' • ••I'MMMHH. I. I. •'••'•• ,• *••_• '•.'•.'.''.' •..•.'-•.'j/. »••:•.•

<pred value> :: = <number> |

<symb pred val>

<symb pred val> ::= SIP predicate symbolic value

<rel> ::= < | > ! = ! <= | >= ! <>

B.2 SIP PREDICATES

unsegmented: returns true if the region has not had

a segmentation method used on it yet.

firstregion: returns true if the current region is R1

B.3 SAMPLE NEWSIP RULE BASE

(comment Rule Base to Determine Large and Small Regions

Used to test interface between SMASC Inference Engine and

SIP/AFES

)

(comment Segmentation rules

)

(comment Goal for wuvfinder

)

(goal wuv_finder
text "segment region into water, urban, and vegetation classes"

prior 0.01

B-5

•\ <. v.-,-:v.--•_
.. ••.•... -. -. .-. - -. _ •... -,.-.- .--'•-•-•- ^ -' . •

". >"U ••!•••"•' • - •••• '. • • • - •.'.'•.'• • - ' IVU-i-V'-'M-y

antecedents (and large_area large_perim first_region)

action (segment using wuvfinder)

)

(evidence first_region

text "current region is the first one being analyzed"

prior 0.1

action (

(test (current) with (firstregion))

)

)

(comment Feature assignment rules

)

(comment Goal for large regions

)

(goal large__region

text "region is fairly large"

prior 0.01

antecedents (or large_area large_perim)

action ((assign label largeregion))

)

(evidence large_area

text "region has a large area, measured in square meters"

prior 0.01
action ((test (current) with (area > 16000)))

)

(evidence large_perim

text "region has a large perimeter, measured in meters"

prior 0.01

B-6

•»-*»' •-" --•-**-•- . •-•-". - _. _,_• -.

-^".T'.T '.•: •.•'• *"-' ".•".'••.'-•i",»: .«. ':•:'.•.•.•. "•. '.•• ."•—.. .-..-. .-- .-• .-•_.-. .•."*. ".•• "• ."- .-• r- r- r- -• r- .-• .-• -• _.->• _.--•

action ((test (current) with (perimeter > 1000)))

)

(comment Goal for small regions

)

(goal small_region

text "region is fairly small"

prior 0.01

antecedents (and not_large small_size)

action ((assign label smallregion))

)

(hypothesis not_large

text "region is not very large"

prior 0.01

antecedents (not large_region)

)

(evidence small_size

text "length and width of region are fairly small"

prior 0.01
action ((test (current) with (length < 250))

(test (current) with (width < 250))

)

)

B-7

•£^_ .J - -» -• -•- -= -* - -* .. - -- •

:•»•«• ,n' .•iMi;i;yv»i •.»•?*? " ' * ' " .*•'*"' -.',-''"-1' .p ,l •,*'•."- ''!• »'•'*'., ,"-7 -' I ' •**•'• * -V:^'.TT_I'.••»•

APPENDIX C

APR Rule Bases

j.'.--^•-\Nv-.'.••.'«'„V. '-.V.'-.'•'^'.'.•.V.'.•-*.-'.••.. - •-•*•.•'•.•.'••• :.»••.--> - • •_.•«.'•.-.'-. .•-.'••*,•?,'>\\

• ••'.U'i.i.m'.i.L-H.- ' ' • •• • ••',' ' ' '

C.1 INTRODUCTION

This appendix contains sets of rule bases developed under the APR effort

for recognition of various types of features. Also included are method files

specifically referenced in the rules. Specific procedures for creation of

rules and application of rule bases are provided in the APR Test and

Implementation Plan and in the APR Final Report, to which this appendix is

attached.

The method files and rule base described here were developed by PAR

Technology Corporation with the aid of Mr. Andrew Douglas, who provided

support in DLMS feature description under a Rome Research Corporation

subcontract, and Mr. Paul Hopkins, a consultant under the APR effort from the

State University of New York College of Environmental Science and Forestry in

Syracuse, New York.

C.2 AIRCRAFT RULE BASE

A rule base for recognizing aircraft in vertical imagery was developed.

It uses a pixel method, called "method 1," for segmentation of the image prior

to application of rules. This method is as follows:

method_type:

pixel

measurements:

avg 3 3

maxint 4 4

minint 4 4

9 . ciassiner:

1- mahal

(training set)
••

:'. class: 4
1

t C-1

*
1

- *
• >

• i •»•|y. • J '.»".«'«'.»'. i •. > i '„I -•*»-. ^. • -, ^ •-, i •, «. », ». - ' ». ' ' ••• », • •—•. • »; ".—-•,- •_• •—.-."•-—•-.".-.•»•-".".»." . "—'

object

regions:

light 1

light 2

class:

background:

regions:

dark 1

edit:

mode_filter 3 3

comments:

This is a simple method for easily detected objects.

The rule base is the following:

(goal Initial_Segmentation

text "segment region 1 with method 1"

prior 0.00001

antecedents (and First__Region)

actions (segment using method 1)

)

(evidence First_Region

text "this is the first region"

prior 0.001

action ((test (current) with (firstregion)))

)

(goal Assign_plane_featuretype

text "region is a plane point feature"

prior 0.01

antecedents (and Is__a_plane)
action((assign featuretype point))

C-2

— —^ _-* • ^'-^^- '-•* '-* -*..'_« -a .-- -^ -• - _ ,,»*, V,i »mi,» m,,m,m',m-a,m A,m,±lmA\,:%.m:.*mMum,,& ,*jTmi,Am,\ ».XMrn*..:* :.',,M**..M *\J

^•^^^^^yr» 11 1 • . •» ' i i • i i »v •.'• ••'••' ••""" ~ • ••.•.',»,•.' • .'» . •'••.« .«',' '.»•••« .^ . ^

)

(goal Assign__plane_featureid

text "region has feature type plane"

prior 0.01

antecedents (and Is_a__plane)

action((assign featureid plane))

)

(goal Assign_plane_smc

text "planes have surface material category metal"

prior 0.01

antecedents (and Is_a_plane)

action((assign smc metal))

)

(hypothesis Is_a_plane

text "region is a plane"

prior 0.001

antecedents (and Plane_class Good_JLength Good_width)

)

(evidence Plane_class

text "region has been classified as a plane"

prior 0.1

action ((test (current) with (class = plane)))

)

(evidence Good_length

text "check for region length in database"

prior 0.01

action((test (current) with (length > 0)))

)

C-3

..-.-• - • - • - • - - •••-•.-•-.•-'- - - •'--•- - - - -------- ^: ^ -. •• • •..•....•.—. i. n. >. • •

• . . •. •;.•;.i.n V-'.'•''.'V- '.l. *.."''V-' -*'•* '"V* •*• '•.•"•'"• *'•"• •*• -mm i | •• i- - «> . | • • - •-» — ••

(evidence Good_wldth

text "check for region width in database"

prior 0.01

action((test (current) with (width > 0)))

)

(goal Assign__airport_featuretype

text "region is an airport areal feature"
prior 0.01

antecedents (and Is_an_airport)

action((assign featuretype areal))

)

(goal Assign_airport_featureid
text "region has feature type airport"

prior 0.01

antecedents (and Is_an_airport)

action((assign featureid airport))

)

(goal Assign_airport_smc

text "airports have surface material category concrete"
prior 0.01

antecedents (and Is_an_airport)
action((assign smc concrete))

)

(hypothesis Is_an_airport
text "region is an airport"

prior 0.001

antecedents (and Has_planes Good_area Good_length Good_width)

)

C-4

r^^^^^^^^^^^^^^^^^^^^*^^^^

(evidence Has_planes

text "region has planes nearby"

prior 0.02

action ((test (>= 2 neighbor) with (class = plane)))

)

(evidence Good_area

text "region has sufficient area to be an airport"
prior .03

action ((test (current) with (area > 10000)))

)

C.3 URBAN SEGMENTATION RULES

The rulebase which follows separates an image into urban and nonurban

region and, then, performs a second segmentation on the urban regions to

identify individual buildings and other features. It uses two methods. The

first, called wuv, is a pixel method which performs an initial segmentation

into classes water, urban, and vegetation. The second is an edge method

called urban edges; it detects edges of buildings, roads, etc. in urban

regions. These methods are listed below:

wuv

method_type:

pixel

measurements:

band1/ei_ranger/ep_smooth 1

band1/ep_smooth 3/median 3

classifier:

mahal

(training set)

class:

water

C-5

/•.•••-..•>•> -.y..Y.a :•••:<• ,-•/•>• ::;;.v.y.•.-•/•. y • ::.•;_ . . : . . ii^_

'.-V-'l•>• ".-".-T.-V--'"-'-'-V- ,.'i>.;"M"."'."r-"• *".:/.-."--.".-.""•.">."V-V-V-".'-'."-'.^".^".^^ ".•""••"••",•".""-""•".•-"-"• ".*•".*-".••"""-V-

regions:

52w1

52w2

52w3
class: »

vegetation

regions:

52v1

class:

urban

regions:

52u1

edit:

mdf 5 5

comments:

experimental Method to segregate Water, Urban, Vegetation

urban edges

method_type:

edge

measurements:

avg 3/ep_smooth 2/sobel/athres 1 1 15

classifier:
none needed

(training set)

edit:
edge_thin 2

4

comments:

Experimental method to detect urban edges

• ^

'.^
."••

.•>
"^

C-6

•v..-^\-::-- -.o-. •.•.--.•,:..-.••..-.-....•..•_,._,. .wv . ". ,.,. . -,-»l\^l ,

^'.S?."AI.'.IWA11.' -.' ••>.' •-',-."vH,-.-,;-\^-,_-' •••. ••• ••. ;i -« • i •". •-:•»•:• i • i «•. i\ i •. i. .—. —. • -. '.—•*-

Rule Base

(comment Segmentation Rales)

(goal Inltial_Segmentation

text "segment region 1 with wuv"

prior %0.00001

antecedents (and First__Region)

action (segment using wuv)

)

(evidence First_Region

text "this is the first region"

prior J0.001

action ((test (current) with (firstregion)))

)

(goal Second_Segmentation

text "segment regions with urban_edges"

prior JO.00001

antecedents (and Not_First_Region Wuv_Region Urban Biggie)
action (segment using urban_edges)

)

(hypothesis Not_First_Region
text "this is not the first region"

prior J0.999
antecedents (not First_Region)

)

(evidence Wuv_Region

text "region has been derived by wuv"

prior %0.1

action ((test (current) with (method eq wuv)))

C-7

".• •-• •.- •.'.•.• •-• .• •-• •-• •-- ~.

P'W'JT.-T-T'1 • - V- •:•'•'- ".•'',l.".'".• •.»".•'.• ":V.".".T."".'/- ' •"•.'••."•• »..•.:•_»-r«/:"1.-":•». v;:••/-"-.-"•. -•* -,-7-.—"-J -;* -» •;» .- - »: r T-; r;

)

(evidence Urban

text "region has class urban"

prior %0.1
action ((test (current) with (class eq urban)))

)

(evidence Biggie

text "region is large enough to resegment"

prior XO.3

action ((test (current) with (area gt 10000)))

)

(comment Region Deletion Rules)

(goal Delete_Region

text "region should be deleted from further consideration"

prior %0.05

antecedents (or Delete 1 Delete2)

action (deleteregion)

)

(hypothesis Delete 1

text "region is misclassified from method wuv and should be deleted"

prior %0.01

antecedents (and Offspring__of_Firstregion Not_Too_Big Not_Urban

Surround ed_by__Urban)

)

(evidence Offspring__of_Firstregion

text "current region is an offspring of region 1"

prior J0.01

C-8

K*-J ..-V-\ • ^LIL^^: . •'> wi^-t.^- ^' ^' «.-els ...-fi.- <-- >.- v.V.vV .--.1 •>•*_•••- .--.--. -•• --. -.'-'. -'. --. --. -'. .'. --. -'. --. - . -N .-..•. -. -•,-> .»-•• -•. .'J

"*."'.* •-* -.' *-.'* •.*••*'.* ••*-.* -.' -.* '• *'•*.*•'—•--•• •-.' *-. -•- --. -T •-.-- .- -- r --. --. •-. -" •- --. --. •-. •-. -. •-. . •-. •-. • . •". •- -- •- -• .-. -

action ((test (eq 1 parent) with (firstregion)))

(hypothesis Not_Urban

text "region is not urban"

prior JO.25

antecedents (not Urban)

)

(hypothesis Surrounded_by_Urban

text "region is surrounded by class urban"

prior JO.2

antecedents (and Urban_Neighbor No_Nonurban_Neighbor)

)

(evidence Urban_Neighbor

text "region has 1 urban neighbor"

prior JO.2

action ((test (eq 1 neighbor) with (class eq urban)))

)

(evidence No__Nonurban_Neighbor

text "region has 0 nonurban neighbors"

prior JO.2

action ((test (eq 0 neighbor) with (class ne urban)))

)

(hypothesis Delete2

test "region is misclassified from method urban_edge and should be

deleted"

prior J0.1

antecedents (and Second_Generation VeryjSmall One_Edge)

)

C-9

k:<...;^^^te^&^^ ,,-: , ,. . . • **- •*- * - •—- ••

(evidence Second_Generation

text "region is an offspring of an offspring of region 1"

prior X0.8

action ((test (eq 1 parent) with (parent eq 1)))

)

(evidence Very_Small

text "region is very small"

prior X0.2

action ((test (current) with (area le 20)))

)

(evidence 0ne_Edge

text "region has a single edge"

prior JO. 15

action ((test (eq 1 edge) with (length gt 0) 3)

)

C-10

